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Summary. After a short recapitulation of the basic concepts of stationary 
perturbation theory, this is applied to a many-electron Hamiltonian, with or 
without an external field, given in a Fock space formulation in terms of a finite 
basis, the exact eigenfunctions of which are the full-CI wave functions. The Lie 
algebra ~ (~) of the variational group corresponding to this problem is presented. 
It has an important subalgebra ~(1) of one-particle transformations. Hartree-  
Fock and coupled Har t ree-Fock (also uncoupled Hartree-Fock) as well as 
MC-SCF and coupled MC-SCF are outlined in this framework. Many-body 
perturbation theory and Moller-Plesset perturbation theory are derived from the 
same kind of stafionarity condition and a new non-perturbative iteration con- 
struction of the full-CI wave function is proposed, the first Newton-Raphson 
iteration cycle of which is CEPA-0. For the treatment of electron correlation for 
properties two variants of Moller-Plesset theory referred to as 'coup]led' (CMP) 
and 'uncoupled' (UCMP) are defined, neither of which is fully satisfactory. 
While CMP satisfies a Brillouin condition, which implies that first order correla- 
tion corrections to first- and second-order properties vanish, it does not satisfy a 
Hel lmann-Feynman theorem, i.e. a first order property is no t  the expectation 
value of the operator associated with the property. Conversely UCMP satisfies a 
Hel lmann-Feynman theorem but no Brillouin theorem. The incompatibility of 
the two theorems is related to an unbalanced treatment of one-particle- and 
higher excitations in MP theory. CMP, which is based on coupled Har t ree-Fock 
as uncorrelated reference, appears to have slight advantages over UCMP, but 
neither variant looks very promising for the evaluation of 2nd order correlation 
corrections to 2nd-order properties. Then four variants of the perturbation 
theory of properties with a nonperturbative treatment of electron correlation on 
CEPA-0 level (but extendable to a higher level) are discussed. While those 
variants which are the direct counterpart of UCMP and CMP must be discarded, 
the 'perturbative CEPA-0' derived from a perturbative treatment on tull-CI level 
appears to satisfy all important criteria, in particular it satisfies a Brillouin- 
Brueckner condition and a Hel lmann-Feynman theorem. A simplified version, 
the 'coupled Brillouin-Brueckner CEPA-0' appears to have essentially the same 
qualities. It is important to replace the Brillouin condition of MP theory by the 
Brillouin-Brueckner condition in non-perturbative approaches, especially if one 
is interested in properties. 
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I. Introduction 

In paper I of this series [1], henceforth referred to as I, the basic concepts of 
stationary perturbation theory have been outlined. Unlike in the conventional 
formulation of perturbation theory it is not assumed that the 'unperturbed' 
Schr6dinger equation is solved exactly, but rather that the energy expectation 
value is made stationary with respect to a family of infinitesimal unitary 
transformations that can be described by means of a unitary group ~, called the 
'variational group', with which a Lie algebra 5e is associated. The most impor- 
tant results of I will be recapitulated in Sect. 2. 

In the present paper we explicitly consider a many-electron Hamiltonian and 
we want to describe effects of electron correlation in the framework of stationary 
perturbation theory, both effects on the energy and on properties. 

All considerations in this paper are based on a Hamiltonian formulated in a 
Fock space, based on a finite-dimensional one-electron basis as given in Sect. 3. 
The exact eigenfunctions of this Hamiltonian are the full-CI wave functions. The 
relevant Lie algebra is called ~ (9  and is also presented in Sect. 3. 

There are two main parts of this paper. The first of these (Sects. 6-10) deals 
with electron correlation in the absence of an external perturbation. After a 
general introduction to the correlation problem in the stationary context (Sect. 
6) we discuss the treatment of electron correlation by perturbation theory (Sect. 
7) in terms of a formal parameter 2 that is finally set equal to 1. We study the 
two possibilities of many-body perturbation theory (MBPT) based on the bare 
nuclear Hamiltonian as unperturbed Hamiltonian, and MMler-Plesset (MP) 
theory where the unperturbed problem is Hartree-Fock theory. In Sect. 8 an 
essentially new approach to the iterative non-perturbative construction of the 
full-CI wave function is presented. This is then (Sect. 9) generalized to the case 
where the reference function is of MC-SCF type. This is somewhat related to 
coupled-cluster theory, but strictly in the stationary framework. In Sect. 10 the 
concept of Brueckner (best-overlap) orbitals in the context of stationary pertur- 
bation theory is introduced. 

Sections 11-15 then deal with properties, i.e. we include an external pertur- 
bation #O to the Hamiltonian. An overview of the problem is given in Sect. 11, 
where also the more academic case of double perturbation theory based on the 
bare nuclear Hamiltonian is considered. The two variants of MP theory for 
properties, namely uncoupled Moller-Plesset theory UCMP, based on uncou- 
pled Hartree-Fock (UCHF) and coupled Moller-Plesset theory (CMP), based 
on coupled Hartree-Fock (CHF) are studied in Sects. 12 and 13, respectively. 
Both have merits and drawbacks. While UCMP satisfies the Hellmann-Feyn- 
mann theorem, but not a Brillouin theorem, the converse is true for CMP. The 
incompatibility of these two properties is related to an unbalanced treatment of 
one-particle and two-particle operators in MP theory. Although it is usually 
preferable to satisfy a HeUmann-Feynman theorem, coupled MP theory appears 
to be a better choice as compared to UCMP. Anyhow for the most interesting 
case of 2nd order correlation correction to 2nd order properties double perturba- 
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tion theory becomes so complicated that non-perturbative approaches look more 
promising. We then generalize (Sects. 14 and 15) the iterative non-perturbative 
approach of Sect. 8 to the case where an external perturbation is present. The 
formalism is somewhat simpler than in double perturbation MP theory, but 
again it is not trivial to find the appropriate way to formulate a fully satisfactory 
theory. It is, at least, required to start from a coupled Brueckner-Hartree-Fock 
theory in order to satisfy a Hel lmann-Feynman theorem. 

Before we discuss the topics just outlined we say a few words on coupled- 
Har t ree-Fock theory, which is the 'non-correlated' reference for  properties 
(Sect. 4), and on coupled MC-SCF theory (Sect. 5) which is an important 
intermediate step in the treatment of correlation effects on properties. 

In 1955 L6wdin has published three classical papers [2], that are to a large 
extent the basis of current ab-initio quantum chemistry. The central importance 
of full-CI (not yet baptized so) and of Hart ree-Fock as a standard approxima- 
tion to it has been stressed. The present paper uses still similar concepts. 
However, it gives more weight to the stationary principle, the Lie-algebraic 
formulation and the study of properties. 

2. Summary of stationary perturbation theory 

We require that the expectation value of the Hamiltonian H is stationary with 
respect to a group ~ of unitary transformations: 

5(~'IU-~HUI~'>=O; V U = ( U * ) - ' e ~  (2.1) 

Any such U can be written as: 

U = exp X; X = - X *  • &or (2.2) 

where &or is the real Lie algebra (of antihermitean operators) associated with the 
'variational group' ~ [1, 3]. 

A necessary and sufficient condition for Eq. (2.1) to hold is the (generalized) 
Brillouin or hypervirial condition: 

(gJ I[H, X]I 7J} = 0; VX • &or (2.3) 

The dependence of the wave function 7 j on a perturbation parameter 2 (in the 
case that H depends on 2) is formulated as: 

7t(2) = er(a)Tt0; Y(2) • &a r (2.4) 

It is essential that the variational group ff is chosen such that with the restrictive 
assumption (2.4) on Y(2) the dependence of 7 j on 2 is well described. 

One expands both the energy expectation value and the stationarity condi- 
tions in powers of 2, and one uses then the stationarity conditions to simplify the 
energy expressions. A detailed derivation is given in I [1]. We only consider here 
the case that H is linear in 2: 

H(2) = Ho + 2V (2.5a) 

E(2) = <~(A)IH(A)I~(A)> = ~ 2kEk (2.5b) 
k=0  

Y(2) = ~ 2kyk (2.5C) 
k = l  
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Co---<T01[Ho, x] l  T0> = 0; 

G -- <ToI[[Ho, X], Y1] + IV, X]I To> = 0; VX ~ ze~ 
1 /4, C2 = (To][[Ho, X], Y2] "~- 2[[ 0, X], Yl], Y,] + [[V, X], Y,]] T0} =0 ;  

Eo = (TolHol To> 

E1 : < TolVI To> 

E2 = l<To[[W, YllITo> 

E3 : ~ < T o l [ [ [ H o ,  Y~], Y1], Y~]ITo> + ½<ToI[[V, Y~], Y,]rTo> 

(2.6a) 

(2.6b) 

VX ~ ~ r  

(2.6c) 

(2.7a) 

(2.7b) 

(2.7c) 

(2.7d) 

Equation (2.6a) is a condition for the unperturbed wave function To, while Eqs. 
(2.6b) and (2.6c) are conditions for Yl and ]12 respectively. Equation (2.7b) is 
recognized as the Hel lmann-Feynman theorem. Equations (2.7c,d) demonstrate 
Wigner's (2n + 1) rule according to which only the Yk up to Y, are needed to 
evaluate Ezn and E2n +1" 

Equation (2.6b) is equivalent to the requirement that the following func- 
tional: 

F(Y,) = (ToI[V, YI]-[-l[[Ho, Y1], Y1][ To> (2.8) 

is made stationary with respect to variations of Y1. This is the equivalent of  
Hylleraas' variational principle in stationary perturbation theory. 

The condition (2.6a) can be satisfied in the following way. We choose a trial 
function ~0 and make the ansatz 

T0 = e ~ o ;  o = ~ ckXk; X k e 5t~ (2.9) 
k 

Insertion of  (2.9) into (2.6a) leads to a non-linear system for the expansion 
coefficients ck. A possibility to solve this non-linear system consists of a 
Newton-Raphson  type iterative scheme, in which one constructs a set of c k from 
the linearized system, uses these to construct an approximate a and an improved 
wave function from (2.9), after which one continues in the same way. For details 
see I. Sects. 2 and 6 [1]. 

For the evaluation of E2 and E 3 the essential step is the construction of  Y1 
from (2.6b). In view of (2.4) and (2.5a) we expand YI in a basis {X k } of ~ r  

Y,= ~ bkXk; Xk e ~r (2.10) 

Insertion of (2.10) into (2.6b) leads to a linear system of equations 

Hktbt + Vk = 0 (2.11a) 
1 

with 

Hk, = (T0l[[H0, Xk], Xz][ To} (2.12a) 

Vk = (To[[V, Xk]l To} (2.13) 

The matrix Hkt is called the Hessean of the unperturbed problem. In I. Sect. 6 it 
has been discussed how to avoid that the Hessean becomes singular. This 
essentially amounts to choosing a subalgebra of ~c ,  excluding operators for 
which Eq. (2.3) is trivially fulfilled. 
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It is often convenient to expand Y1 in a basis {X~} of the complex Lie 
algebra 5e c rather than the real subalgebra £fr of antihermitean operators. In 
this case a generalization of the definition (2.12a) is necessary that is valid for 
other than antihermitean Xk. This is: 

Hk, = ( To I[x~, [Ho, X,]]I To > (2.12b) 

If  one defines Vk still by Eq. (2.13), the linear system of Eqs. (2.11a) has to be 
replaced by: 

~" Hk;b; + V* = 0 (2.11b) 
1 

For Xk e Lf r, Eqs. (2.12b) and (2.11b) reduce to Eqs. (2.12a) and (2.11a), 
respectively. 

In the same framework double (and multiple) perturbation theory can be 
formulated. For 

H(2, #) = H o + J~Vlo + #gol (2.14a) 

Y(2, #) = ~ 2~#;Ykl; (k = l = 0 excluded) (2.14b) 
k, l=O 

E= ~ 2k#;Ekl (2.14C) 
k, l= 0 

one gets (2.6a) and (2.7a) as before and 

Clo -- (Tol[[Ho, X], Ylo] + [Vlo, X] I To) = 0 (2.15a) 

Col -- (Tol[[Ho, X], Yol] + [Vol, X]I To) = 0 (2.15b) 

E~o = (ToIV~o[ To) (2.16a) 

Eol = (TolVo l To)  (2.16b) 

E~I = (Tol[V~o, Yol]] To) = (To[[Vol, Ylo][ To) (2.16c) 

g21 = ½(Tol2[[glo, Ylo], Yot] '~-[[Vol, Ylo], Ylo] +[[[Ho, Ylo], Ylo], ]['r01][ ~tT/0) 

--l(TolZ[[V,o, I1Ol], Ylo] + [[1/ol, Ylo], Ylo] + [[[Ho, Yol], Ylo], Ylo]lTo) 
(2.16d) 

For other Ek; see I. Sect. 5 [1]. One recognizes (2.16c) as Dalgarno's exchange 
theorem [4]. 

In double perturbation theory one will often be interested in a Brillouin theorem 
or a Hel lmann-Feynman theorem with respect to a single parameter. Consider 

lim ( T  I[H, x]lT) = lim (To[ e-r[Ho + #Vol, X] eVl To) 
)o~0 2--+0 

=(ToI[Ho, X]+p{[Vol,X]+[[Xo, X], Yol]}+O(p2)]To)=O (2.17) 

This Brillouin theorem means that the coefficients of all powers of # vanish for 
2 = 0, which is in fact the case in view of (2.6a) and (2.15a). Of course (2.17) 
holds up to that order in # that one has considered explicitly. Let us now take 
a Hel lmann-Feynman theorem, but with respect to the other parameter 

lira dE To> ~ o ~  =E°1+~E'~+22E:1 + . . . .  lim (T]  8H ,~o  ~ IT )  = u~olim (To] e -  YVol e 

= (ToIVol Av ~[Vol, YlO] AV ~2{[V01, Y20] -}- I[[v01, Ylo], rio]} '[- O(43)1 To)  
(2.18) 
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If  we collect powers of # and note that (2.16b,c,d) are satisfied, we realize that 
(2.18) does, in fact, hold. In the case of (2.16d) one must realize that this can 
alternatively be written as 

E2~ = (kUol[Vol, Y2o] + ½[[Voa, Yao], gaol[g%) (2.19) 

which one verifies by first using (2.15b) for X = Y2o, then the Jacobi identity and 
(2.6a) and finally vanishing of C2o constructed in analogy to (2.15a,b). 

One of the reasons why one prefers schemes which satisfy a Hellmann-Feyn- 
man theorem is that the error of a 1st order property is quadratic in the error of 
the wave function, otherwise only linear. 

3. The variational group of full CI and its subgroups 

Starting point for all aspects of this paper is the Fock space Hamiltonian [5, 6] 
H P q 1 pq rs (3.1) = h q a p  + ~grs apq 

written here in a tensor notation with the Einstein summation convention over 
repeated indices implied. In order to write H in the form (3.1) one must first 
specify a (necessarily finite) orthonormal one electron spin-orbital basis {)~p }. In 
terms of this basis, matrix elements hPq, g r ~q and creation and annihilation 
operators a p = ap t and aq a r e  defined and in terms of these excitation operators 
a q, rs apq.  

h p = <)~q Ihlzp > l ( 3 . 2a )  

gPq = (Xr(1)Z~(2)lrf21[)~p(1)Xq(2)) (3.2b) 
a q = aqap; arpq = araSaqap (3.2c) 

T.he exact eigenfunctions of the Hamiltonian (3.1) are the 'full-CI' wave func- 
tions in the given one-electron basis {Zp }. 

We shall consider essentially three variational groups and their associated Lie 
algebras. 

(a) The group ~(1~ of unitary one-particle transformations within the given 
spin-orbital basis, generated by the elements 

a q ~ ~,-~(c 1) (3.3a) 

For spinfree problems it is advantageous to use instead the group of one-particle 
transformations between spinfree orbitals and the associated Lie-algebra with 
elements 

E o = aO~ ~ a Q~ (3.3b) / e B 

(b) The group fq(oo) of all unitary transformations of arbitrary particle rank 
generated by the elements 

rs ~" etc. e 5¢~oo~ (3.4a) a q, apq,  apq r 

(c) The group f#~"~ of unitary transformations of n-electron wave function 
with fixed n. It can be generated by the 50(~ "~ with elements Zk such that 

Z k  = Z ' k P ,  = P~Z'k;  Z'k ~ ~ ( ~ )  (3.5a) 

where P, is the projector to n-particle states. Since the Z~ given by (3.4a) are 
particle-number conserving, they commute with Pk, which implies that 

[Zk, Z,] = [Z~, Z ~ ] P ,  (3.5b) 
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If Z ;  has an excitation rank larger than n, the corresponding Zk vanishes. The 
Lie algebra ~o(:) hence breaks off at operators of particle rank larger than n. We 
shall not write the projector Pn explicitly, but assume whenever we write Z s 4e~) 
that a Fock spdce operator (3.4a) is multiplied by Pn. Since, at the end we evaluate 
expectation values with an n-electron wave function, the Pn can be omitted. 

Of course, ~(J) is a subalgebra of 5#(~ ~°). This also means that the Lie-algebra 
of elements of 2~o(1) multiplied by P, (not by P1) is a subalgebra of 2~o(,). Since 
this 'modified' ~(1) leads to the same matrix elements as the original 4e(~ 1) we 
shall say that 5f(~ 1~ is a subalgebra of ~ (9 .  

Since the full-CI wave function can be obtained from any other wave 
function expressible in the same basis by means of a unitary transformation 

U = e~; a = - a  t ~ L~°(~ n) (3.6) 

the stationarity condition satisfied by the full-CI wave function is 

(tP I[H, Zl[ 7 J ) =  0; VZ e 5e~ "~ (3.7) 

Since ~ o  is a subalgebra of 5¢~c n), we see that a necessary though, of course, not 
sufficient condition for a full-CI wave function is that 

(~ '  1[/-/, X] l~  ) = 0; VX ~ ~ c  ~) (3.8) 

In fact (3.8) is not only fulfilled by the full-CI wave function, but also by a 
Hart ree-Fock or an MC-SCF wave function. 

It is generally easier to find a wave function that satisfies (3.8) than (3.7). It 
therefore makes sense to try first to satisfy (3.8) before in a second step one tries 
to improve ~P such that it satisfies (3.7) as well. Often one will be able to satisfy 
(3.8) exactly, but (3.7) only approximately. This leads then to some unbalance 
between the treatment of  one-particle transformations and transformations of 
higher-particle rank, which is very characteristic for many-electron theory. This 
unbalance causes problems in particular if in addition to the electron interaction 
another perturbation is present, i.e. in the theory of correlation corrections to 
properties (see Sects. 12, 13). 

Of course, for spin-independent problems we may replace the operators 
(3.4a) by their spinfree counterparts [5] 

EQ ~ R s  pSTU ?, ~ eQ, ~ ?oR, etc. (3.4b) 

with Ee e defined by (3.3b) and the higher order excitation operator analogously. 
Here we shall only argue on spin-orbital level, so we don't  need special names for 
the Lie algebras generated by (3.3b) or (3.4b) respectively. 

The Lie algebra ~ )  generates the variational group of full CI. One 
important subalgebra has already been mentioned, namely that 5e~ ° of all 
one-particle excitations. Other subalgebras of L,e(~ ") are generated by the opera- 
tors of type (3.4a) defined for a subspace of the chosen space of spin-orbitals. In 
MC-SCF theory the subalgebra corresponding to excitations within the space of 
active spin-orbitals plays an important role (see Sect. 5 and I. Sect. 8). 

We are especially interested in properties. To describe them we need an 
additional term pf2 to the Hamiltonian and we require that (3.7) holds for 

H(#) = H + #f2 (3.9) 

We shall henceforth use the symbol H for the full Hamiltonian (including the 
electron interaction) in the absence of the external field. The Hamiltonian 
including/zO will be referred to as H(/~). 
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4. Coupled Hartree-Fock and uncoupled Hartree-Fock 

Like Hartree-Fock theory is by definition the best treatment of a many-electron 
system in the framework of an independent-particle model - i.e. with complete 
neglect of electron correlation effects, coupled Hartree-Fock is in the same sense 
the best independent particle method for properties and hence the reference with 
respect to which correlation effects are defined. 

A short outline of coupled Hartree-Fock has therefore to precede the 
treatment of correlation effects. 

The main interest in this section is not to give a new derivation of Hartree-  
Fock and coupled Hartree-Fock theory, but rather to show in some detail how 
one arrives from the general Lie algebraic formulation of the variation principle 
and of stationary perturbation theory, by explicit insertions of a basis of the 
relevant Lie algebra, at working equations that can be used for computations. 
This is rather easily done in the present context, but can hardly be worked out 
in full length in the more complicated situations of later sections. 

A formulation of Hart ree-Fock theory essentially in the spirit of the present 
approach has probably first been given by Hinze and Roothaan [10] as well as 
Levy and Berthier [11]. 

What we want is to satisfy (3.8) for H(#) given by (3.9) and H by (3.1). The 
formalism of I. Sect. 4 applies directly. We search for an unperturbed wave 
function 7% and a perturbing operator Y(/~) such that the #-dependent trial wave 
function is of the form (2.4, 2.5c). We call the external perturbation/~12, because 
2V will be reserved for the electron interaction as perturbation. The Hartree-  
Fock wave function is determined by the condition (2.6a) and the 1st order 
operator Y1 by (2.6b). The lowest orders of the energy are given by (2.7). 

The reference wave function which we optimize by applying a one-particle 
transformation is usually a single Slater determinant, but we can also consider 
the more general case that it is a linear combination of Slater determinants with 
fixed coefficients (e.g. by symmetry). 

Explicitly we get for (2.7a) (subscripts on E count orders in #) 

P q - ' l- lcrPqnrs (4.1) E 0 = h q ~ p  _ 26rs --pq 

where y and F are the (unperturbed) one- and two-particles density matrices 
respectively 

Ypq = (~0[a q I~o); F ~  = < ~ t l o l a r P f f [ ~ t o >  (4.2) 

The Brillouin condition (2.6a) becomes 

< ~ o I [ H , a ' . ] J % > - -  ' "  ' " + . ' ~ r r ' r ' p ~  rs = o  (4.3) h g 7 ,  - -  7qh  . . . . .  - -up--rsoup 

In the special case of 7% a single Slater determinant, considerable simplifications 
arise 

p q yP =6Pqnq; F P q = ( ~ r 3  s - -6Ps3qr)npnq;  lip - - 0  o r  1 (4.4) 

Eo = hPnp + Lspq,~ . (4.5) 2,5, pq'~p'~q 

-'q 'q q' (4.6) gr ,  = grs  - grs  

provided, of course, that the basis functions Zp used in (3.1, 2) are chosen so that 
the spin orbitals occupied in ~0 are a subset of the basis. The stationary 
condition (4.3) can then be formulated as 

~(n ,  - ns) = 0 (4.7a) 
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with the matrix elements of the Fock operator 

= - s t  ( 4 . 7 b )  h s + grtnt  

and n e the occupation number (equal to 0 or 1) or the spin orbital Sp. 
An alternative formulation [7, 8] is 

[z 6 2] = 0 (4.7c) 

i.e. that the matrix representation of the Fock operator (4.7b) commutes with the 
one-particle density matrix (4.2). _f and ~_ must hence have the same eigenfunc- 
tions. This justifies an iterative method, where one starts with some 7_, constructs 
from it a new f,  from its eigenfunctions a new ~ etc. until self-cons~tency, as is 
usually done in closed-shell Hart ree-Fock calculations. 

We shall henceforth use the labels i , j ,  k . . . .  for occupied spin orbitals 
(hi = 1) and a, b, c . . . .  for unoccupied ones (ha = 0) p, q, r . . . .  for arbitrary ones 
(in Sect. 5 we further introduce x, y, z , . . .  for partially occupied spin orbitals). 
Then we can write the Brillouin condition (4.7a) as 

=f7  = 0 (4.7d) 

Since occupied and unoccupied spin orbitals don't  interact, we can choose a set 
of occupied and unoccupied orbitals such that 

fPqq = apfPq (4.7e) 

i.e. that the Fock operator is diagonal. We shall make this choice. 
We now consider a Hamiltonian including the external perturbation/~f2, i.e. 

we switch to coupled Hartree-Fock theory (CHF). The first order energy (in 
powers of #) is in view of (2.7b) 

Ea = < 01OI (4.8a) 

We shall assume that f2 is a one-electron operator (for this choice coupled- 
Hartree Fock-approximation is usually applied) 

P q (4.9a) ( D q a p  

(4.9b) 

In order to get E2 and E3, the linear system (2.11b) has to be solved, with Hkt 
given by (2.12b) and Vk by (2.13). The basis operators Xk are now of the form 
a q, i.e. each index k has to be replaced by a pair of indices p, q. We take 
Xk-a~- w., Xl=au,t  then (2.11b) becomes 

vt u v H w . b  t + (2 w = 0 (4.10) 

with 

=eOqy w -cO~7p  =COw(n ~ - h e )  (4.11) 

t v _ _ ~ v h t , u q  t q v v t tp rs n~w', = <~eol[a~, [n, a'u]]l 7'o> = hwy~ - ~ - q , w  - -  (~whuTq + huTw + gwsF,p  
Af_ tp ]~rv ~ v  tp r r s  tv rs sr v t  ¢~t ~ s r  ]~pv vr jot -4- sr F p t  

g . . . .  up- -~ugrs lwp- -grsFuw--gwuFsr- -~wc~pu- -sr  -~gpuFwr--gpu--sw 

(4.12a) 

One sees that 

H ~ .  = ' . . . .  CH ~t ~* (4.13) Huw,  Hvt = ~- -w~ 
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For the special case that 7% is a single Slater determinant, the expression (4.12a) 
simplifies greatly. One can derive this by inserting (4.4) into (4.12a), but it is 
easier to proceed as shown in the appendix by using the particle-hole formalism 

- v t  H,~t,  = ( 6 ~ f t ~  - 6 twf f , ) (n~ - nw)  + g w , ( n ~  - -  n t ) (n~  - n ~ )  (4.12b) 

For the choice (4.7e) this reduces to 
v t - v t  

H~d,  = 6 ~ 6 w ( e t  - e , ) ( n~  - n t )  + g w , ( n ~  - n t ) (n~  - n ~ )  (4.12c) 

or with the convention i, j, k for occupied spin orbitals and a, b, c for empty 
ones, the only nonvanishing elements are: 

H ~  a = 6~6~(ea - -  ~e) + g ,~  (4.14a) 

H}~ = _~b~ (4.14b) 

that plays a role in the RPA approach (see I. Sect. For the 'overlap matrix' A, 
6.3) one gets 

A ~t u = (7J0l[a~, 

The linear system of Eqs. 

Noting that O~ = - ( 0 ~ ) *  

6w~'. - 6.Tw = 6w6 . (n .  - n,) 

A~ = 1; A ~ =  - 1  

(4.10) becomes for the general case 

H~o~i H ~ b ~  + ~+ 0 i ~., a .71- 

and using (4.11) one sees immediately that 

(4.15a) 

(4.15b) 

(4.16a) 
(4.16b) 

(imaginary) and this means that 

b~ = b7 for f2 real (4.20a) 

b~ = - b 7  for £2 imaginary (4.20b) 

One can then write (4.18) as 

(gj  - -  8 b ) b  j = (~OJb + (g, Jb a - - g J ~ a ) b  i for £2 real (4.21a) 

(sj - eb)~ = COg + ( ~  + ~a)b~ for £2 imaginary (4.21b) 

b7  = - (b~)*  (4.17) 

and that it is sufficient to solve only one of the two Eqs. (4.16). Inserting the 
explicit expressions (4.12c) and (4.11) into (4.16a) we get 

(~j - ~b)b~ = ~ + g~ib~ - g~ab~ (4.18) 
It is convenient to solve this system iteratively, ignoring the coupling via ~ on the 
r.h.s, in the first iteration and using the n - t  iteration of the b on the r.h.s, in 
(4.18) to get those of  the (n + 1)st iteration. Complete neglect of  these coupling 
terms defines 'uncoupled Hart ree-Fock ' .  We come back to this approximation 
at the end of this section. 

When self-consistency is reached for the system (4.18), the second order 
energy is obtained according to (2.7c) as 

E2 =1<1//o1[~,-~, rl][i//o > l_~, ,p]3r,~,  q 1 p - r  s : = f o i b  a 2WqUpi,  r - - ~ ( D r O s 7  p Re , i (4.19) 

We have used here the formulation in terms of spin-orbitals, the spinfree 
formulation (to be preferred in practice) is only slightly more complicated. 

In I. Sect. 7 it was pointed that there is some difference in the formalism for 
real and for imaginary perturbations. If  f2 is real (imaginary), also Y is real 
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For the third order energy we get from (2.7d) a sum of the expectation values of 
a triple and a double commutator. The expectation value of the triple commuta- 
tor vanishes because for an Y1 of the form 

Y1 a i i a = b a a  i b i a ,  + (4.22) 

no fully contracted diagrams for the H given by (3.1) can be constructed. So we 
are left with the double commutator (see the appendix) 

E3=½(~oI[[Q, y~], y1]17,0)=1,  i-a~e a~,b~,e b " , - - o ~ o ~ b ,  +~o}b~b a} ~ ( 3 )  i O j O  a ( O b U i U  a 

j a i 
= - -  6 9 b b  i b~ } (4.23) Re{ogib jba  a b i 

An important feature of closed-shell Hartree-Fock theory is that there is a 
one-electron operator of which the Hart ree-Fock function ~)HF is eigenfunction 
with the eigenvalue E v e ,  namely 

HHr=fl~q aq -- ~gijl-iJ (4.24) 

This will turn out important in later sections where the Hamiltonian H will be 
decomposed as (with V sometimes called 'fluctuation potential') 

H = H H F  "}- ~" (4.25) 

The relation between H qF and H is particularly transparent if we formulate both 
in the particle-hole formalism (see the appendix) in which excitation operators 
carry a tilde 

n = E u v  +fl~q~q + 1-o, pq~rs (4.26a) 2& rs ~ p q  

- hi + 7gij = J i  - 5 g i j  EnF-- i 1-ij ~ 1-ij  (4.26b) 

H H F  = f~q ~tq -~-~i  - -  2 6  ~ i j  (4.26c) 

~" = E H  F --j '~: -1- ! 8 i J  -4- l ~pq~trs  l ~ p q a r s  
2 6 i j  - -  2&rs  ~ p q  ~ 2Ors  ~pq  

- -  P P (4.26d) _ ~_a~q.r, + ( ~  hq)a. ~- ~-~'J 
- -  26  rs ~pq  ~ 2,5ji 

If  one considers that HHF treats the average electron interaction, one can argue 
that one may replace the correct #-dependent Hamiltonian (3.9) by the Hamilto- 
nian 

H/~F + #f2 (4.27) 

in order to describe the property f2 with an average electron interaction taken 
care of. This philosophy leads to uncoupled Hartree-Fock theory (UCHF). 
Note that the abbreviation UHF cannot be used since this is usually interpreted 
as 'unrestricted Hartree-Fock' .  The drawback of this approach is that stationar- 
ity of (TJo]H~,F+#O[7~0) as function of # does not imply stationarity of 
(kg o [H + #f217J0). This is only implied in the limit # ~ 0. One hence ignores that 
the presence of #f2 has an effect on the electron interaction, even the averaged 
o n e .  

As to an early discussion of CHF and UCHF see [9]. 

5. MC-SCF and coupled MC-SCF 

In the MC-SCF theory we have to consider two variational groups fql and f#2, 
both of which are subgroups of the full-CI group (#<n). The Lie algebra ~1 is 
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58~) with elements (3.3a) as in Hart ree-Fock theory while the Lie algebra 582 Of 
if2 is that of the shift operators 

P~,~ = Iq$. )(~b,~ I (5.1) 
corresponding to CI in the active space. In the case of CAS-SCF - which we 
mainly consider - an equivalent basis of this Lie algebra is 

{a y, a ~ , . . . } P ,  (5.2) 
i.e. a basis of the same type as 58(9 but defined in terms of the subset of active 
spin orbitals with occupation number between 0 and 1, labelled x, y, z . . . . .  This 
basis is not given at the outset, but only in terms of the stationary condition for 
the unperturbed wave function. We follow the formalism of I. Sect. 8, where it 
is important to define the order in which operators of the two groups are 
applied. For mixed commutators one must always first commute H with a 
element of 58~ = 58(1) then of 582 with basis (5.1) or (5.2). The MC-SCF wave 
function 7Xo must satisfy the stationarity condition (2.3) for operators X both in 
58, and 582. For an iterative construction of 7% (see I. Sect. 8) we start from a 
trial function • and formulate 7% as 

~g0 = e ~ ;  a = ~ ~k~(1)V(i)~'k + Z C(k2)X(k2); XO) ~ 58i, X~ 2) e 582 (5.3) 
k k 

The linear system to be solved in the first Newton-Raphson cycle for the 
determination of the c~ j) is then 

u02),,(2)~ H~ 1) = 0 (5.4a) E (H~11>C~l) -~- " ' k ,  "l , "q- 

l 

E \XXkl/K4r(21)a(l)~'l q- *'klr4(22)'~(2)~'-t ] q- H ~  2) = 0 (5.4b) 
l 

with 

H C/) = ( ~  I[H, X(k/)]l~); X(k/) ~ 58j ; j  = 1, 2 (5.5) 

H~/) = (~l[[ H, X(k/)], X~/)][~); X~ 1), X~ 1) 6 581; X(2), Xt 2) ~ 582 (5.6a) 

H(D 2' = <+Ills-/, x t q l + >  = **kl~4r(21)', x(1)  ~ <>~O,, .~r(2) ~ 582 (5.6b) 

Note that in mixed double commutators, H must first be commuted with an 
element of 581. 

In terms of • and the coefficients c~ ) obtained in the first iteration cycle from 
(5.4) one constructs by the recipe (5.3) a better approximation ~1, inserts this for 

in (5.5, 6) to get new coefficients from (5.4) and proceeds until self consistency. 
If  (b was sufficiently close to the desired 7So, this scheme converges quadratically. 

Having so solved the unperturbed problem one can switch to coupled 
MC-SCF, i.e. solve (2.6b) for Y1, with YI expanded in analogy to (5.3) as 

YI = ~ b~a)x o) + ~, b(k2)X(2); X °) ~ 58,; X~ 2) ~ 582 (5.7) 
k k 

One gets a system of equations very much like (5.4), just with H(k ') and HI, 2) 
replaced by f2(k ') and f2~, 2), and • in (5.3) replaced by 7to . We can write this in 
block form as 

,,(%/+) 
I7 + t a + )  = 0 ( 5 8 )  

with 

f2(k J) = (5Vo][12, X(k/)l[TJo); X(k j> a 58/ (5.9) 
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For the second order energy we obtain 

E (2) = Re{b°)f2 (1) + b(2)~'2 (2)} (5.10) 

It consists of an orbital-rotation- and a CI component. 
The formalism just outlined is very compact. It becomes more lengthy if one 

inserts the explicit expressions for the matrix elements (5.5) and (5.6). For the 
matrix elements (5.6a) of the Hessean fo r j  = 1 we can use the general expression 
(4.12a), of course, without the simplifications that only hold for a single 
Slater-determinant reference function. 

For the matrix elements (5.6a) with j = 2 one gets 

A considerable simplification arises (see I. Appendix B) if the qS~ are so chosen 
that (~bu > is diagonal and that • is identical with one of the ~b,. The 
matrix elements of type (5.6b) 

( ~  It[H, a~], e0Al~) = ( ~  ItH, a~]14~e )(~b~ I ~ ) - ( ~  [~b e ) ( ~  I[H, aeq]lq~) (5.12) 

can be evaluated by means of (4.3) just with the density matrix elements yq, Y~'~ 
replaced by the corresponding transition density matrix elements. 

Most MC-SCF methods in current use [12, 13] follow essentially the general 
scheme outlined here, while there is relatively little discussion on coupled 
MC-SCF in the literature [14]. 

6. lterative construction of a full-CI wave function 

In Sects. 6 and 10 we study a Hamiltonian H in the absence of an external 
perturbation. We use the notation that q5 is an uncorrelated wave function and 
7 ~ the full-CI wave function or an approximation to it. We call the perturbation 
operator a rather than Y, because Y will be reserved for the response to an 
external perturbation #f2. 

We know that a full-CI wave function satisfies the Brillouin condition 

( ~  I[H, Z]l 7J> = 0; VZ e ~(~") (6.1) 

We remember that the Har t ree-Fock wave function ~ / F  satisfies 

(~b~/FI[H, X][~LrF) = 0; VZ ~ ~(c ~) (6.2) 

and that it can be constructed iteratively, starting from a trial :function and 
choosing the ansatz (2.9) with a ~ L~a(r 1). This suggests to proceed for (6.1) in a 
similar way. We choose a trial function 4~ and construct a new function 
[7, 8, 15, 16] 

= e~cI); a = ~ ckZk (6.3) 
k 

and determine the coefficients ck such that the expectation value ( t / ' lH I ~g) is 
made stationary, i.e. that (6.1) is satisfied. 

0 = (q~l e-~[  H, Z,] e~lq~) 

=(4,1[n,Z,l+E[n, zA, crl+ltE[H,Z,l,a],~r]+...l~) (6.4) 
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Insertion of the expansion (6.3) into (6.4) leads to a non-linear system of 
equations for the ck. If  the trial function 4~ was sufficiently well chosen, Ila II will 
be small and the Ickl will be small and it will be a good approximation to 
linearize the system (6.4), i.e. to solve [7, 8, 15, 16] 

[w, zk]l ) + Z I[[H, zd, = 0 (6.5) 
1 

Using these ct = c} 1) we construct via (6.3) a new trial function ~o) and we solve 
the system (6.5), with ~ replaced by ~(1~. If  the scheme converges, it does so 
quadratically and finally approaches the full-CI function T. 

There is a significant difference with respect to quadratically convergent SCF 
or MC-SCF (see Sect. 5), that can be formulated in the same way. In SCF ~6 is 
a single Slater determinant, and e¢~ will be a single Slater determinant again (in 
MC-SCF the number of determinants in the expansion will remain unchanged), 
while now starting from a single Slater determinant ~, the new function ~(1) will 
be a complicated linear combination of  determinants. Before we develop a 
general strategy for the iterative construction of the full-CI wave function we 
consider some questions of general interest. 

The first question is the choice of the reference function c/i. One possibility 
(a) is to take ~b as the appropriate eigenfunction of the bare nuclear Hamiltonian 
(this is, by the way, often done in Har t r ee -Fock  theory as iteration start). The 
other one (b) consists in choosing the Har t r ee -Fock  wave function ~HF as 
reference. 

The difference between the two choices is obvious. In case (a) one never 
discriminates between X ~ 2~ °(~ and Z ~ ~(1), one treats all Z ~ ~(n~ on the same 
level, in case (b) one first takes only X e ~(1) until (6.2) is satisfied and one 
worries only then about the Z ~ ~ o ) .  Since - as we shall see - the treatment of  
Z ¢ ~o(1) is usually possible only approximatively, choice (b) has the advantage 
that at least single excitations are - to some extent - treated exactly, but at the 
same time the drawback that single and higher excitations are taken care of in an 
unbalanced way. 

There is also a third possibility, namely to choose the 'best-overlap' or 
Brueckner determinant as reference. This does not make much sense as starting 
point for perturbation theory, but has advantages in the nonperturbative con- 
text. For details see Sect. 10. 

Another choice that one has to make, is whether one wants to treat the 
electron interaction perturbatively or in a nonperturbative way. Perturbation 
theory has the advantage that the ordering in powers of  the perturbation 
parameter simplifies the resulting equations to the extent that one does not have 
to worry about additional simplifications, as is necessary in the nonperturbative 
approach. On the other hand, the perturbation expansion may not converge and 
low-order perturbation theory may lead to poor results. 

Since perturbation theory is somewhat simpler we discuss this first (Sects. 7 
and 8), before we take up the idea of a nonperturbative approach (Sect. 9). 

7. Unitary formulation of many-body perturbation theory (MBPT) 
and Meller-Plesset perturbation theory (MP) 

It is not the aim of this section to give a new derivation of  many-body 
perturbation theory (MBPT), but rather to demonstrate that even MBPT (in a 
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finite one-electron basis) fits into the general framework of stationary perturba- 
tion theory and that its derivation in this context is relatively simple. Most 
important for us is the relation to the nonperturbative approach in the same 
context (Sect. 8). The present derivation of MBPT shares with that from coupled 
cluster theory [ 17, 18] that the Lie algebraic structure makes the connectedness of 
the expansion (keyword linked-cluster theorem) immediately obvious and that 
diagrams are not needed for a general presentation of the theory, although they 
are useful for the illustration of particular terms. As to a recent historical-criti- 
cal review on MBPT the reader is referred to [19]. 

We want to treat the 2-dependent Hamiltonian 

H~ = Ho + 2V (7.1) 

P q" V !~,pq~rs (7.2) Ho = h q a p ,  = 2,5, rs ~pq 

by means of stationary perturbation theory. The perturbation parameter 2 is 
only formal and will be set equal to 1 at the end, but it serves to define orders 
in perturbation theory. 

The variational group is obviously that of full CI (see Sect. 3) with the Lie 
algebra ~(n~ if we consider n-particle states. The u n p e r t u r b e d  Brillouin condi- 
tion (2.6a) is trivially fulfilled for Z operators of higher particle excitation rank 
than 1. We need only consider the nontrivial conditions 

< ~/0 I[no, aq] I i[/0 > = q s r q h s y  p - hp7r  = 0 (7.3) 

Obviously (7.3) implies that h and V commute, i.e. have common eigenfunc- 
tions. We hence first diagona~ze h, ~e., the matrix representation of the one- 
electron Hamiltonian H 0 in the given basis {Zp } 

h p c  P = e r C q ;  ~1 r = cPZp (7.4) 

We then construct the Slater determinant T0 from the ~r corresponding to the 
lowest one-electron energies e~ in the sense of the aufbau principle and express 
the Hamiltonian in terms of the ~r and the corresponding excitation operators 
such that 

H o = epaPp (7.5) 

For the 0th and 1st order energy (in orders of 2) we get (summation over i) 

E0 = ei (7.6a) 

< olVl o> ' - ; J  = = ~g~j (7.6b) 

Next we have to satisfy the condition (2.6b) for a, (as to the choice of the 
symbol a rather than Y see the remark on the beginning of Sect. 6), or the 
linear system of equations (2.11b) for al expanded in the form (2.10), with 
Hkt given by (2.12b) and Vk by (2.13). Since V is a two electron operator 
the V~ vanish for Ark an excitation operator of excitation rank ,other than 1 
or 2. 

It is convenient to introduce the particle-hole formalism [20] (see the 
appendix) with 

Ho = ep~tPp k- ei (7.7a) 

V pq ~rs ~ i . p~q  lcri  j = gr~ apq -[- - -  (7.7b) 0 tq ~ p  2 6 j i  
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ggtu (To [[ars, 8~1[ To ) + gi, (To [[at, ag]l ~eo > - -'p VPq 1 rs ~ tu - ir ~ s 
= - -  g i q ( n p  - -  r l q )  (7.8a) 

Vr  m = gg~wl tu  ( ~ 0  [[a~~Wt,, ~Pq][ ~o)  + gi,-it ( To i[at ,~. ~7~q] [ To ) 

= {gPq(rPrqr~3 w + 3Prq3~3t) - - g P q ( r P t 3 q r ~ 3 ~  +rPurq3~rw)} 

x {n~ns(  1 - -  np ) (  1 - -  nq)  - -  npnq(  1 -- np)( 1 -- n~)} (7.8b) 

The only nonvanishing matrix elements of type (7,8) are 

V~ -~J" ~ -ij (7.9a) = gij ,  V~ = -g~j  

v ~ b  = ~ j b  ; V ~ b  = --gab-iJ (7.9b) 

To construct the matrix elements of the Hessean in terms of the corresponding 
basic operators we note that 

[H o, ~pq] = (eq - e p ) a q ;  [Ho, ~Tp~] = (er + e~ - ep - eq)rrpq (7.10) 

(~o][~Pq, [Ho, ~Tr]][ To) = (e r - -  es)(n~ - n~)6 ; 6  f (7.1 la) 
~ t u  t u - -  t q p q (To][~ pq, [Ho, a~w]][ To) = (e,  + eu - e~ - e ~ ) ( 3 ~ 6 ~  6 ~ 6 ~ ) ( 6 ~ 6 w  - 6Pw6~) 

x {n~nw ( 1  - n,)(1 - nu)  - n,nu(1 - n~)(1 - n w ) )  (7.1 lb) 

Couplings between single and double excitations vanish. 
The only non-vanishing matrix elements of the Hessean are hence 

(~o1[ ~j, [Ho, a~]]] ~o)  = ea - ej (7.12a) 

(Tol[~ ], [Ho, ~]][ To) = ea - ej (7.12b) 

( ~ o l [ ~  ~, [Ho, ~7~b]] I ~0)  = e, + e b - -  e i - ej (7.12c) 

(Tol[~7~b, [Ho, ~b]][ To ) = ea + eb - -  e~ - -  ej (7.12d) 

Since the Hessean is diagonal, the solution of the linear system (2.1 lb) is trivial 

b7 = (e, - ei) - ~ e / =  - (b~) * (7.13a) 0 lJ 

b ~b = (ea + eb 

In the expansion of o- one must, 

a~b= 
i.e. that a non-redundant basis is 
one gets 

-~- - - 1  - a j  2 
E 2  ( e l - -  ea) Igij] 

- ei - e j )  - l~ ,3b = - - ( b Y b ) *  (7.13b) 

of course, take care that 

- -a~~i  b = --aij~ba = a)i~ba (7.13C) 

given for i < j ,  a < b. For the 2nd order energy 

+ Z Z (e,+ej--ea--eb)-llg~b] 2 (7.14) 
i < j a < b  

Higher orders of o. and E are obtained in a straightforward way. The results are 
in agreement with what one gets from the traditional derivation of MBPT, which 
is usually not done in a stationary context, but under the assumption that the 
unperturbed problem is solved exactly. The same diagrams can be used to 
represent the results. However, the use of diagrams is neither necessary to 
formulate nor to understand the theory. The Lie-algebraic structure of the theory 
guarantees that only connected diagrams contribute. 

To second order in o-, i.e. for o- 2 triple excitations appear, which are needed 
for the evaluation of E4 and Es. 
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The main message of the first part of this section is that MBPT or more 
precisely the perturbation expansion of full CI can be derived in the framework 
of stationary perturbation theory and satisfies hence all theorems that hold in 
this framework. 

We now want to switch from classical MBPT to MP. We no longer treat the 
entire electron interaction by perturbation theory, but we take a part of it to 
infinite order in 2, namely that part which can be described by a one-particle 
transformation, for which a treatment to infinite order is rather simple. So rather 
than to require that the Brillouin condition 

(~(~)  [[H o + 2V, Z]] 7J(~) > = 0; VZ ~ ~(n) (7.15) 

holds order by order in )~, we now try first to satisfy 

(7%[[Ho + V, X]l 7~0> = 0; VX e (~1) (7.16) 

in a non-expanded form, before we satisfy the counterpart of (7.15) for the 
Z ~ 5~(~ n) that are not elements of 5a(~ °. Equation (7.16) defines, of course, 
Ha r t r ee -Fock  theory, i.e. we can use the results of Sect. 4. 

The distinction between MBPT and MP made here is not shared by all 
authors in the field, but if there is a point in using the term MP as an alternative 
to MBPT, this only makes sense if MP is regarded as based on Har t r ee -Fock  as 
0th order reference and MBPT on the bare nuclear Hamiltonian [19]. There is a 
need to distinguish these two situations, while there is no need at all to 
discriminate - as is sometimes done - between a formulation in terms of dia- 
grams (MBPT) or without diagrams (MP), since the theory is the same whether 
or not one uses diagrams. 

In order to treat that part of the electron interaction, not taken care of  in 
(7.16) - w h i c h  is usually referred to as electron cor re la t ion- ,  we can use an 
important property of closed-shell Har t r ee -Fock  theory, namely that there is a 
one-electron Hamiltonian HnF defined by (4.26c), that has the Har t r ee -Fock  
wave function as eigenfunction and the Har t r ee -Fock  energy EnF as eigenvalue. 

Let (~HF be the Har t r ee -Fock  wave function (a single Slater determinant). 
The 0th order energy E 0 is, of  course, equal to the Har t r ee -Fock  energy EHF 
given by (4.26b). The 1st order energy vanishes 

E1 = <~qF[l~[ ~HF)  = 0 (7.17) 

For  the construction of  E2 and E3 we need a, that is constructed in an analogous 
way as in the beginning of this section. 

Since l?, in the particle-hole formulation, is a pure two-electron operator, 
only two electron operators contribute to ~1- We get 

rl = 2 Z .,ob-,j , ,ij ;,oh, (7.18)  I,~" ij a ab -}- C, ab ~ i j  ] 
i < j a < b  

b~ b = (ea + ~b -- e~ -- ej)-- , ~ b  = --(b~b)* (7.19) 

E2 =a  a(ei + e1 -- e~ -- ~b)-l[g~b [2 (7.20) 

For  the evaluation of  E3 we start from (2.7d). The expectation value of the triple 
commutator  vanishes, such that 

E 3 = ½ ( ~ [ [ [ V ,  y,],  y1][4)> 1- i j -cd~ab l_l.~kl~ijhab hik~rcj hab (7.21) 
= " ~ O c d g a b O i j  -F- 8 U a b ~ k l U i j  - -  U c b ~ a k U i j  

Again the final results are formally the same as in traditional theory, which 
indicates that MP can be justified in the framework of stationary perturbation 
theory. 
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As in the traditional formulation of MP, both single and triple excitations 
contribute to 0"2 as well as to E4 and Es. 

8. Stationary unitary coupled-cluster theory 

We now want to take up the ideas of Sect. 6 to construct the full CI wave 
function iteratively (rather than by perturbation theory as in Sect. 7). 

It is convenient to perform first a Har t ree-Fock calculation i.e. to construct 
a wave function which satisfies (6.2). We then search for a wave function ~ given 
by (6.3) and we approximate the solution of (6.4) by that of (6.5). 

Let us rewrite the linear system (6.5) as 

~ Hklcl = --Dk (8.1) 
l 

Since this is an iteration start there is no point in solving (8.1) exactly. It is 
recommended to consider only those lines in (8.1) where Dk ~ 0. Then, of course, 
one must also limit the expansion (6.3) to these k such that the Hessean H 
remains a quadratic (and regular) matrix. Obviously Dk = 0 if Zk is an excitatio~ 
operator of particle rank higher than two (since the Hamiltonian does not 
contain higher than two particle operators). But D k = 0 also holds for one-parti- 
cle operators due to the Brillouin condition. The Zk to be considered are hence 
two particle excitation operators of the form 

a~. b, a~b (8.2) 

We get the corresponding coefficients C~b and c~ b from the linear system of 
equations (8.1) or (6.5) that is well known as the CEPA-0 system. It amounts to 
making the truncated energy expression 

E = ( ~  [H + [~, ~1 + ½[[~, ~], o11~) (8.3) 

stationary with respect to variation of 0- (expanded in operators of type 8.2) [ 11]. 
When stationarity is achieved, an alternative expression equivalent to (8.3) is 

E = ( lnl > + liB, (8.4) 
CEPA-0 is known under many names (for details see [21]), the oldest is probably 
L-CPMET [22] (for linearized coupled-pair-many-electron theory). That CEPA- 
0 is the first non-trivial approximation to a unitary coupled-cluster theory has 
probably been first shown in [15]. 

CEPA-0 is often a good approximation (at least in cases where • is not 
near-degenerate with some other state) and usually much better than 2rid order 
perturbation theory. In fact (8.3) can also be derived via a partial summation of 
certain terms of MP to infinite order. 

To discuss the accuracy obtained in this first iteration and in subsequent 
iterations we define the norm S =  110-11 of the correlation operator 0-. The 
dominant ck obtained as solution of (8.1) are hence of O(S). In the next iteration 
cycle contributions of higher order in S will be obtained. 

The a constructed in the first iteration cycle will be called 0-(1). In a 
straightforward quadratically convergent iteration scheme the next step would be 
to replace • in (6.4) by 

(~(1) = eo-(1)~); 0-(1) = Z C~l)Zk (8 .5 )  
k 
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It is perfectly in the spirit of a Newton-Raphson scheme to linearize this system 
to (6.5) - o f  course with 4~ replaced by 4 ~(1) and cz by c~ 2). However, the 
Hausdorff expansion in powers of a (1) should not be truncated, which causes 
problems since this expansion is infinite. In Hart ree-Fock theory one is much 
better off because the counterpart of 45(1) can easily be obtained from • by a 
simple orbital rotation. 

Fortunately there is an argument which allows us to truncate the Hausdorff 
expansion in powers of a (1) in (6.4) without leaving the context of a quadratically 
convergent scheme. The basis of this argument is the observation that expecta- 
tion values of odd-order commutators of H with double excitation operators Z D 
of type (8.1) 

<e I[H,/D]le>; <4,1[[[H,Z~I, ZSI, ZZ]I~> (8.6a) 

are usually significantly smaller than even-order commutators 

<~ I[[g, Zo], z5 ] l~> ;  <e J[[[[n, ZZ] , ZZ], Z ; ] ,  Z Z ] l e  > (8.6b) 

In fact for the one-electron part H0 of H, expectation values of type (8.6a) 
vanish. Of the two-electron part only exchange-type integrals contribute to these 
matrix elements. This argument is valid as long as no excited configuration is 
near-degenerate with the leading configuration, because then expectation values 
(8.6b) which involve energy differences, can become small. This case has to be 
avoided (we come back to this later). On the same argument also the validity of 
perturbation theory is based. 

The norm S of the correlation operator a is dominated by the contribution 
a~ ) of two-particle operators to 0. obtained in the first iteration cycle (we now 
use the subscript D for double-excitation operators). 

s = 110.11 110.0)11 (8.7)  
Both the second and the third terms in (8.3) are of O(S 2) with respect to the 
reference energy ( ¢  [H I ~>, which becomes obvious if we remember that (8.3) is 
equivalent to (8.4) for the 0. constructed from the CEPA-0 equations. 

Consider now the matrix elements required in the 2nd iteration cycle 

: 1 H 0 -(1)] • • n (2) (q~ ][H, Zk] + [[H, Zk] 0.(1)] + ~[[[ , Zk], 0.(1)], "~ " I~ )  (8.8a) 

H(k~ ) = I t [H,  zk], z,]  + [[[H, zk], Z,l, 0.(')1 + "  

+ k and l interchanged (8.8b) 

Let us first consider the case that Zk and Z~ are two-particle operators. As a 
result of stationarity to 1st order (the CEPA-0 equations) the sum of the first 
two terms in (8.8a) vanishes, and the leading term is the third one. This means 
that the update o-(02) of 0.0 is smaller by O(S  2) than the leading term 0.0) of aD. 
To get 0.~) correct to O(S 3) it is sufficient to take the leading term and the next 
term (which is of the same order) of (8.8a) i.e. 

Dg 2) = 4 ~  [½[[H, z~],  0.(')1, 0.(1)] _~_ 1 i l l s  ' Zk], 0.(1)], 0.(1)], 0.(1)]J~) (8.9) 

and only the first term of (8.8b). 
This second iteration cyc le -  so far limited to two particle operators 

0. ,~ a n -  corresponds to making the Hausdorff expansion to 4th order in a 
stationary with respect to variation of a 0. = 0.n. 

Of course, in the 2nd iteration cycle also 1-particle (0.s), 3-particle (0.r) and 
even 4-particle operators (0.Q) contribute, since they have non-vanishing D(k 2). 



60 W. Kutzelnigg 

The importance of as and aT is comparable to that of  the update of a D as far as 
the energy is concerned, while for a itself and hence for properties as is even more 
important. 

If  we consider (8.8a) for a 1-particle or 3-particle operator, we see that the 
1 st term vanishes, but not the 2nd term and this means D k is of  0($2). The leading 
contributions to a s and a r (which start with a(~ ) andf a(~ )) are of O($2), i.e. one 
order of  S smaller than as .  

To get the as and a r  to the accuracy consistent with the 2nd iteration cycle 
it is sufficient to take the leading (i.e. the 2nd) term in (8.8a) and the 1st term in 
(8.8b). Since in the 2nd iteration cycle one gets a s  correct to O(S 3) one might 
wonder whether one should include more terms in (8.8) to get as and o- r to the 
same accuracy. This is not necessary, since the argument related to (8.6) has to 
be somewhat modified. If  one single (or triple) excitation is involved expectation 
values like 

(~l[[H, Zs],Zz~llel,); (~l[[[[H, Z s ] , z z , ] , z s ] , Z s ] ~ )  (8.10a) 

are usually smaller by one order of  S than 

z,], zs], zs]l } etc. (8.10b) 

This means that inclusion of the next term in (8.8a) would improve as or aT by 
something of O(S 4) which is beyond the accuracy achieved for as  in the 2nd cycle. 

As far as the contributions to the energy are concerned, the leading terms a(~ ) 
and ~r~) of as and a T have an effect of  the same order as the update a~  ) of as ,  
namely of O($4), since as and a T don't  interact directly with cb. 

For  aa in the 2nd iteration cycle the first two terms in (8.8a) vanish, hence 
the leading contribution is of O(S 3) like a~  ), so it should be included if we want 
a to this accuracy. Of course, the contribution to the energy is only of O($5), 
which justifies to neglect a o in the 2nd iteration cycle. 

To have a quadratically convergent scheme it is sufficient in the first iteration 
cycle to truncate the Hausdorff expansion of  the energy at terms quadratic in a 
and to limit a to as ,  in the 2nd cycle one has to include up to terms of 4th order 
in a and to include up to triple excitations, i.e. to consider as, aD, a t ,  and in the 
3rd cycle terms to 8th order in a etc. 

If  we are interested in a (or via a in properties) rather than in E, it may be 
recommended to include only as and a T (for one-electron properties only as)  in 
the 2nd iteration cycle. 

While the 2nd iteration still looks feasible, the 3rd iteration appears hopeless. 
One must rather try to achieVe that the convergence is so fast that stopping after 
the 2nd or even the 1st iteration leads to sufficiently accurate result. This is the 
case if S is suffÉciently small. 

Let e.g. S ~ 0.1, then the correlation energy Ecorr is ~ 1% of Eo, the error of  
the 1st iteration (CEPA-0) is ~ 1% of  Ecorr or ~0.01% of Eo, the error of  the 
second iteration 0.01% of Ecorr or ,,~10 -6 E0. This is certainly satisfactory. 
However, if S ~ 0.3, we get an error of  ,,~ 10% of  Eco~r in the 1st iteration and 

1% of E~or~ in the second iteration. This is at the limit of what is tolerable. 
In typical cases of only dynamic correlation there are many double excitations 

with comparable, but small coefficients. Then the present scheme should work. 
Non-dynamical correlation is characterized by a single or a few double excitations 
with relatively large coefficients. It is then recommended to deal with these 
excitations not in an iterative way, but rather in a closed form to infinite order, 
i.e. by full CI in a limited basis. 
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A possible recipe is hence as follows. One first performs a CEPA-0 calcula- 
tion and determines the natural orbitals of the CEPA-0 wave function. One 
checks whether the occupation numbers of all virtual orbitals are sufficiently 
small. In this case one either stops or goes to the 2nd iteration. ~if there are 
weakly occupied NOs with too large occupation number one performs next a 
CAS-SCF calculation with these orbitals as active. Then one performs a new 
iterative coupled cluster calculation based on MC-SCF as described in Sect. 11. 

There may be cases where the first iteration cycle, i.e., CEPA-0 is not 
accurate enough, but where the 2nd cycle is too tedious. 

While the first iteration cycle gives the energy correct to 0($2), the energy 
after the 2nd iteration cycle is correct to O($4). One might want to have a 
scheme where the energy is correct to O($3). It does not appear possible to 
achieve this 'intermediate accuracy' in the framework of a Newton-Raphson 
type iterative scheme towards the construction of the full CI wave function. On 
the other hand methods in current use like the CC-D, or CC-SD approaches 
(coupled-cluster with double excitations or with single and double excitations) 
[22, 23] or their simplifications like CEPA (coupled electron pair approxima- 
tion) [24] or 'quadratic CI' [25] achieve just this type of accuracy. However, 
these methods are not related to a stationarity condition as considered in the 
present paper. That even CC methods satisfy some kind of stationarity condi- 
tion has recently been analyzed in detail [21, 26]. 

To switch to conventional coupled cluster theory would, to a large ex- 
tent, destroy the present philosophy. However, one can try to sum certain 
important contributions to infinite order in o- D in such a way that this leads 
only to a slight modification of the CEPA-0 functional. It has been shown 
that on these lines the CPF (coupled pair functional) method [27] can be 
justified [21]. 

Note that as and fiT are relatively unimportant for the energy, but very 
important for properties (at least as),  so that a strategy which is good for the 
energy need not be good for properties (see Sects. l l ,  14, 15). 

An interesting possibility to formulate a theory correct to O(S 3) - a n d  to 
other arbitrary o rde r s -  is inspired by the unitary coupled-cluster approach 
UCC(k) of Bartlett and Noga [28]. Here one also makes a truncated Hausdorff 
expansion of the stationary with respect to variation of o-. However, in the last 
term one replaces H by HHF. So the functionals for the 2nd, 3rd and fourth 
order in a are respectively 

(,~ I H + [n, a] + l [ [ n ~ ,  ,~], all ~ > (8.11 a) 

(cbIH + [H, a] + I[[H, a], a] + -~ [[[H~F, a], o-], a][~b )> (8.1 l b) 

1 H ( ~ I H +  [H, a] + I[[H, a], a] + I[[[H, a], a], a] + ~[[[[ HF, a], a], a], a]l~ ) (8.11c) 

This hierarchy of approximations is reminiscent of MP perturbation theory, 
since one partitions H into HHF and 17 and truncates the expansion of HHF at 
the higher order than that of l 7. In fact (8.11a) is just the Hylleraas functional 
for MP theory to 2nd order. (8.1 lb) is practically identical with CEPA-0. For a 
limited to o- D the triple commutator vanishes and (8.11b) is CEPA-0; if as 
and/or o"7- are included there are some very small contributions from the triple 
commutator. 

Obviously (8.11c) is the desired functional, which is correct to O($3), 
i.e. intermediate between the first and the second iteration in our iterative 
approach. 
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9. Brueekner orbitals and the Brillouin-Brueckner condition 

In Moller-Plesset perturbation theory (MP) the Brillouin condition of Har t ree -  
Fock theory plays a central role (see Sect. 7). It guarantees (a) that the 
first-order correction E1 to the energy vanishes and that (b) to the first-order 
correlation operator al only double excitations contribute and that hence (c) 
only double excitations contribute to the second and third order E2 and E3. 

Although the non-perturbative treatment of Sect. 8 was also based on a 
Har t r ee -Fock  reference function, no rigorous consequences resulted from this fact, 
only plausibility arguments, e.g. that double excitations dominate and that in the 
first iteration cycle it is sufficient to replace a by aD. What we have used is that 
with a Har t r ee -Fock  reference function the norm S of  ]l a[I is sufficiently small, 
such that a Newton-Raphson  type iterative scheme is possible, and that in some 
cases even the first iteration cycle may be sufficient. There is, however, no theorem 
which tells us that in this respect the Har t r ee -Fock  reference is the best choice. 

A well-known alternative to Har t r ee -Fock  is to take that particular one- 
particle reference function • that has maximum overlap with the exact wave 
function 7" (for both 4) and 7" normalized to unity). The formal solution to this 
problem has been given long ago [29, 30]. We repeat it here in our formalism. 
We apply an infinitesimal unitary one-particle transformation to 

q ~  eXq); XE ¢~ 1) (9.1) 

and require that the overlap integral <q~]7'} is stationary with respect to the 
transformation (9.1). This is the case if 

(q~[X]7"} = (q)]Xe~lq~} =0 ;  VXE ~(1) (9.2) 

Since X is a one-particle excitation operator, this means that single excitations 
Xq~ with respect to • are not contained in 7", i.e. that the operator U = e ~ which 
transforms q~ to 7" does not contain single excitations. 

The single Slater-dominant wave function • which satisfies (9.2) is called the 
'best-overlap' or 'Brueckner' determinant [29], and the spin-orbitals from which 

is build up are called Brueckner orbitals. 
Before we investigate how to construct the Brueckner orbitals, we have to 

ask whether we really want to satisfy (9.2). In fact (9.2) involves the full wave 
operator e ~ which is non-separable. We know, however, that many-body theory 
should be formulated in terms of separable quantities only. If  one thinks a little bit, 
one finds out that what one wants is that the correlation operator a does not 
contain single excitations, i.e. 

Ix l > = 0, v x  1) (9.3) 

The two conditions (9.2) and (9.3) are not equivalent. Consider e.g. that a 
consists of two-particle and three-particle operators. Then a z contains also single 
excitations as products of 3 particle excitations and two-particle deexcitations. 

Now the question arises why it has not yet been observed that (9.3) is a 
better condition than (9.2). The answer is that the concept of  a Brueckner 
determinant has mainly been used in connection with wave functions 7' = eSq~ in 
intermediate rather than unitary normalization. In this case S consists only of 
excitation and no deexcitation operators and (9.3) with a replaced by S implies 
(9.2) with ¢r replaced by S. On the other hand stationarity conditions like (9.3) 
fit much better into the context of a stationary approach than a non-stationary 
one as in the case of the intermediate normalization. 
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If  one knows a, it is relatively easy to construct the Brueckner determinant 
by the requirement (9.3). Of course, if one knows the exact a, there is no real 
need for this and if a is only approximate, this may not be very helpful. Let 05 
e.g., be determined from CEPA-0, such that it contains no single excitations. In 
this case (9.3) is satisfied for ~)HF and we can't improve this. 

Another more constructive approach is as follows. We take the CEPA-0 
functional that we want to minimize, but we do not only want to minimize it 
with respect to variations of a but also with respect to variations of the reference 
function. We argue that the a should be expressed in terms of the orbitals 
occupied or unoccupied in the improved reference function i.e. that e Y should be 
applied to e ~  rather than to ~, we hence take the functional 

(~le YHeY+[e-rHeY, a]+l[[e-rHer,~],a]l ~} (9.4) 

For an optimized ¢ we have Y = 0 and the stationarity condition with respect to 
variation of Y is 

<a~ I[H, x ]  + [[H, X], cr] + ½[[[H, X], a], a]l > = 0; v x  ~ ~,~(1) (9.5) 

We call this the Brillouin-Brueckner condition (more precisely: to 2nd order in 
a -  or at CEPA-0 level). For  an iterative solution of (9.5) we linearize the 
stationarity condition for the functional (9.4) after expansion in powers of Y to 

<~ I[H, x ]  + [[[H, X], Y] + [[H, X] + [H, X], Y], a] 

+ ½[[[H, X] + [[H, X], Y], a], a]l } = 0 (9.6) 

The nice thing is that whenever one has constructed Y, one can immediately 
absorb it into a new ¢. Condition for stationarity with respect to variation of a 
is 

1 H {~ [[H, Z] +~[[ , a], Z] + ½[[H, Z], a]](b} = 0 (9.7) 

In the very beginning we neither know Y nor a, so we set them equal to 0, and 
we only have an arbitrary reference function ~. For  a = 0, (9.5) becomes just the 
Brillouin theorem of  Har t r ee -Fock  theory, i.e. we determine • as Har t r ee -Fock  
function. We enter with (b into (9.7), which is the CEPA-0 system discussed in 
Sect. 8 from which we get a. With this a we enter (9.6) and get a new Y and from 
this a new • and so forth. 

Remember that in the discussion of CEPA-0 in Sect. 8 we have argued that 
single excitations don' t  contribute to a in the 1st iteration cycle because for these 
in (6.5) the first term is zero due to the Brillouin theorem. Now we can argue that 
due to the Brillouin-Brueckner condition (9.5) the matrix element Dk given by 
(8.8a) is for X ~ 5¢(~ l) of 0(8 3) and as does not contribute in the 2nd iteration 
cycle. So for • determined by (9.4) single excitations in a can be neglected entirely 
in the 2nd iteration cycle. They have been absorbed into the reference function. 

If we don' t  truncate the Hausdorff expansion in powers of a, condition (9.5) 
implies that a does not contain single particle excitations, i.e. as = 0. 

10. Stationary unitary coupled-cluster theory based 
on a multiconfiguration reference function 

We can apply the same philosophy as in Sects. 6 and 8, but now with respect to 
a reference function of MC-SCF type. We hence want to satisfy (6.1) with • in 
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(6.2) an MC-SCF function. For the sake of  simplicity we consider that it is of 
CAS-SCF type. We label doubly occupied orbitals as i , j ,  k ,  active orbitals as 
x, y, z and unoccupied orbitals as a, b, e. Our ~ now not only satisfies the 
Brillouin-condition (5.4a) but also the CI condition (5.4b). 

We want to solve (6.4) and again we linearize to (6.5), i.e. we take a CEPA-0 
like 1st iteration. 

Like in the case of a closed-shell reference state we can argue that the 
dominating contributions are those for which the first matrix element does not 
vanish. Due to the Brillouin theorem single excitations described by aT, a~', a~ 
give vanishing matrix elements. The CI condition guarantees that fully internal 
excitations like a y, a~y etc. don't  contribute. Also triple and higher excitations 

t-labc involving at least three occupied or three virtual orbitals like a~ bx or _,xy are 
negligible. What we laave to consider are (a) genuine double excitations of the 
type 

ab a x  x y  ab  ab 
a i j  , a i j  , a i j  , a lx  , a xy  (10.1) 

(b) single excitations accompanied by internal excitations 

by yz az abzu etc. (10.2) aix  , a i~ ,  a x y ,  - , x y  

(C) double excitations accompanied by internal excitations 

aby  [1 ayz  aisx , -~jx etc. (10.3) 

The problem with excitations of  type (b), (c) is that their particle rank is 
unlimited. Fortunately there is some redundancy and it is sufficient to consider 
only conditional excitations (excitations with spectator line) such as 

b x  y x  a b x  b x y  
a i x  , a i x  , aisx , a i x y  , . . .  (10.4) 

as well as excitations with spin flip (spin-polarization), where x~ is excited to x/L 
Instead of  considering explicitly excitations of type (10.4) one may also consider 
separate excitations from the Slater determinants qSu that constitute the MC-SCF 
reference function ~. 

Alternatively to (10.4) we may write the basis operator as 

a~ ]q~ )<4,~ 1, a~14,~)<q~l,  •. • (10.5) 

i.e. as products of elements of 5e(c n~ with basis operator of  type (5.1) which are 
relevant in MC-SCF theory. Of course the choice (10.5) is equivalent to 
considering excitations separately from the configurations contained in the 
MC-SCF functions. In order to avoid that the number of basis operators of type 
(10.5) becomes too large, one should try not make the MC-SCF-expansion 
unnecessarily long. 

The second iteration becomes rather complicated, because now all single and 
triple excitations have to be included together with such excitations accompanied 
by fully internal excitations of arbitrary rank. 

We remember that in the single-determinant-reference case we have regarded 
it as worthwhile to treat the single excitations in a privileged way, because they 
can be taken care of to infinite order, and because the Har t r ee -Fock  start has 
privileged them anyway. This led to the construction of  the Brueckner orbitals. 
We can now proceed in the same way. However starting from MC-SCF - more 
precisely from C A S - S C F -  we have not only privileged single excitations but 
also fully internal excitations, i.e. excitations within the active space. So we 
should continue to do so, i.e. rather than perform an SCF-calculation in the 
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presence of  the most important correlation corrections we should now perform 
an MC-SCF-calculation. In this way we not only get Bril louin-Brueckner 
orbitals, both fully occupied and active, but also improved coefficients within the 
MC-SCF function. If  we had the exact Brueckner-MC-SCF this would not only 
imply that single excitations don' t  contribute to the exact wave function, but also 
that the wave function cannot be improved by excitations within the active 
space. 

What one should strive at is to incorporate all excitations with relatively 
large coefficients in the MC-SCF reference function, such that the norm S of the 
residual a is so small that the first iteration cycle is sufficient. 

Like in the single-determinant reference case one can obtain a slight improve- 
ment over CEPA-0 including explicitly single or triple excitations in the first 
iteration and/or use partial summations of  the a9 contributions like in the ACPF 
scheme [31]. 

11. Stationary many-body perturbation theory for properties. 
Coupled and uncoupled MP-PT 

We now want to study effects of  electron correlation on properties, i.e. in 
principle we want to perform full CI with a Hamiltonian that contains the 
external perturbation #~2. There are four main possibilities. 

(a) we regard the electron interaction 2V (or the residual interaction 217) 
and #f2 as two perturbations and apply double perturbation theory. 

(b) we treat only #~2 by perturbation theory but take care of  the electron 
interaction in an iterative non-perturbative way. 

(c) we use 'finite perturbation theory', i.e. w e  perform nonperturbative 
calculations for some selected values of # and extrapolate to # -- 0. 

(d) we treat hl 7 by in powers of 2 but #~2 in terms of 'finite perturbation 
theory', e.g. we perform MP2 calculations for selected values of  # and we 
extrapolate to # = 0. 

In the double perturbative approaches of type (a) we have again the choice 
between taking the bare-nuclear Hamiltonian or the Har t r ee -Fock  Hamiltonian 
as H 0. 

Finite perturbation theory of  type (c) does not need a special elaboration, the 
arguments of Sects. 8 - l 0  can directly be used. It is particularly attractive that no 
new theory is needed. A disadvantage is that finite perturbation theory is hardly 
recommended for magnetic properties, where the Hamiltonian becomes complex 
and everything has to be done in complex arithmetics. There are also fundamen- 
tal problems with finite perturbation theory, since as we shall see (Sect. 15) it 
does not satisfy a Hel lmann-Feynman theorem. This has been known in 
coupled-cluster theory [32], but is somewhat unexpected for a theory based on 
stationarity of a well-defined functional. 

Double perturbation theory is rather straightforward if one takes the bare 
nuclear Hamiltonian H 0 as unperturbed and the full electron interaction V, 
multiplied by 2 (which at the end is set equal to 1) as well as #~2 as the two 
perturbations, i.e. one chooses 

H(2, #) = Ho + 2 V + #(2 (11.1) 

Here one can directly apply the formalism of  I. Sect. 5, that has briefly been 
recapitulated in the introduction, see Eqs. (2.14-16). We just identify V with Vlo 
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and £2 with Vow. For Elo and E0~ we get in view of (2.16) simple expectation 
values. For Ell we either need I11o or Yol, the construction of E2o or Eo2 
requires Iilo or Yol, respectively. 

We are mainly interested in the case that f2 is a one-electron operator, given 
by (4.9a). We get for the kth  order property corresponding to £2 

£2 k = Z 2'Ezk (11.2) 

Eok is the respective property with complete neglect of the electron interaction, 
Elk takes care of 1st order effects of the electron interaction etc. 

Although this approach is straightforward, it is not recommended in atomic 
or molecular calculations, because the full electron interaction is too large to be 
treated as a perturbation, and convergence of the perturbation series is not 
guaranteed. It is usually better to treat at least the average electron interaction 
non-perturbatively, i.e. to use Moller Plesset perturbation theory for the elec- 
tron correlation (see Sect. 7). 

Unfortunately there is no unique way to generalize MP to a double perturba- 
tion theory. This has the following reason. In MP theory the unperturbed 
Hamiltonian HHF i8 based on a stationary condition for the expectation value 
( ~  ]HI c b )  with respect to one-praticle transformations. It looks straightforward 
to base coupled MP-theory on coupled Hartree-Fock [34], where ((b IH +/tOl~ > 
is made stationary with respect to one-particle transformations. 

This then defines an unperturbed Hamiltonian HHF(/t), which is /t-depen- 
dent (and this not only due to the direct presence of /tO, but also t o  the 
/t-dependence of the Coulomb and exchange operators). Consequently we also 
get an effective electron interaction 17(/t) that is /t-dependent. To define MP 
theory we multiply 17(/t) by 2 (which at the end is set equal to 1), i.e. we deal 
with the Hamiltonian 

H(£,/t) = HHF(#) + £17(/t) = ~. # k H ~  + ~. £/tk17(k) (11.3) 
k k 

which has a rather complicated structure, since it also contains terms in/t2, 2# 
etc. Obviously ~the coupled Moller-Plesset (CMP) approach ('coupled' since it 
is based on coupled Hartree-Fock) satisfies a Brillouin theorem in the sense 

lim (7. [[H(2,/t), X][ 7. ) = (lI/HF(/t) IHH (/t) l ~.n(/t) > 
2 ~ 0  

= (7*Hr(/t) [g +/tf2[ 7*HF(/t) ) = 0; VX ~ ~ ( 0  (11.4) 

for al l / t  in a neighborhood o f / t  = 0. 
Of course (11.4) implies that singly excited configurations don't contribute 

to 1st order in 2, and this independently o f / t .  It further means that the 1st 
order correlation correction to all properties vanishes. 

One would also like that a Hel lmann-Feyman theorem holds in the sense 

~H(2,/t) 17.> = <7*lal7* > (11.5) ~/t ( 7. In( A,/t)l 7. ) = ( 7. I ~/t 

and so to all order in 2. This is not the case, (11.5) only holds i fbne  does not 
expand in powers of 2. If  one does make this expansion, the form (11.3) of 
H(2,/t) has to be used, i.e. 

d~ ( 7. [HI 7* ) = (7. ]H~)F + 217(1) 1 7.) (11.6) 



Stationary perturbation theory II 67 

If one insists on a Hellmann-Feyman theorem in the form (11.5) one must start 
from a Hamiltonian in which, unlike in (11.3) the #-dependence is just in a term 
#~. This is achieved if we choose I~HF and V from ordinary (rather the coupled) 
Hartree-Fock theory 

H = H H F +  #O + 21~ (ll.7) 

with HHF and I y p-independent, which agree with the p-dependent counterparts 
for # = 0. Obviously for the choice (11.7) the Brillouin theorem (11.4) no longer 
holds, except at # = 0. 

Double perturbation theory based on (11.7) is related to uncoupled Hartree- 
Fock theory and should therefore be referred to as uncoupled Moller-Plesset 
theory (UCMP). It has been in use long before CMP [33]. 

We shall formulate both variants (Sects. 12 and 13). In this context the 
careful analysis of Moller-Plesset perturbation theory for properties must be 
mentioned [34] (see also [35]). 

We agree with some of the conclusions of [34], especially as to the superiority 
of CMP over UCMP; but we have also some reservations as to CMP and we 
regard the incompatibility of a Brillouin theorem and a Hellmann-Feynman 
theorem as a serious defect of a w  kind of MP-based double perturbation theory. 

based on For the double perturbation theory ~. the bare nuclear Hamiltonian 
as H0, i.e. for the Hamiltonian (11.1) both~(11.5)and (11.4) hold, but the latter 
with H -- Ho + V replaced by Ho. This 'Brillouin-theorem' for the bare nuclear 
Hamiltonian is, of course, different from the conventional Brillouin theorem. 
Anyhow, there is no unbalanced treatment between single and multiple excita- 
tions and hence no choice between a coupled and an uncoupled variant. 

In addition to the dilemma to choose between coupled and uncoupled MP 
another drawback of double perturbation theory is that the expressions for the 
Ekl are rather lengthy and not easily interpreted, especially for the practically 
most important quantity E=, the 2nd order correlation correction to a 2nd order 
property. 

A good alternative is perturbation theory for #~2 with a non-perturbative 
,treatment of electron correlation effects (see Sects. 14 and 15). 

12. Uncoupled M~ller-Plesset (UCMP) theory for properties 

We satisfy the Brillouin-condition of Hartree-Fock theory for X E ~<1) only in 
the absence of the extra perturbation, i.e. in the limit # ~ 0. 

We hence consider double perturbation theory for the decomposition (11.7) 
of the Hamiltonian, with HHF defined by (4.24) and I 7 by (4.26c). 

We get 

E0 = <~  IH~F['~> = < ~ ] H I ~ >  = E.F 

Em = <~1~1¢> = o 

E~o = ½ <v I[~, r~o]l,t,> 

Eo, = < ~ l a l ¢ >  

Go= =½<~l[a ,  Yo, l l~> 

E,, = <~ I[a, Y,o]l~> = <~ I[~, Yo,]l~> = 0 

(12.1a) 

(12.1b) 

(12.1c) 

(12.1d) 

(12.1e) 

(12.1f) 
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E21 =1<~12[[12, Ylo], Yol] '~-[[~'-~, rio], Ylo] "q-[[[HHF, Ylo], Ylo], Yol]l~> 

= 1<~12[[17, YOl], Ylo] ']-[[~e~, rio], Ylo] "]- [[[HHF, Yol], Ylo], Ylo]l(J)> (12.1g) 

g,2 = k<~ 12[[/2, Yo,], Y,o] + [[~7 Yo,, Yol]] + [[[H~,F, Yo,], rod, Yxo]l~> 

=½<@1[[ 17, Yo,], ro,]]@> (12.1h) 

provided that Yol and Ylo are determined from 

C~o--<~I[~,ZI +E[H,,F, ZI, YIoII¢'>=O; Z E ~(c n) (12.2a) 

COl=(~,I[/2, XI+[[HHF, XI, YolII4,>=O; X~LY~c ") (12.2b) 

In (12.2b), although we have written X e 5¢~"), only X e £0o) gives a non-trivial 
contribution, and (12.2b) is, in fact, the basic equation of uncoupled Har t ree-  
Fock theory (see Sect. 4). On the other hand due to the Brillouin condition for 
# = 0, only double excitations contribute to Y10 in (12.2a). 

The results for E0, El0, E2o, Ylo agree, of course, with the E0, El, E2, I1, of 
Sect 7 for ordinary MP. 

The first-order correlation correction to the first-order property E u (associ- 
ated with/2) vanishes since/2 (or Ym) is a pure one-electron operator, I/-,0 (or 
I7) a pure two-electron operator. For a similar reason the first and the last terms 
on the r.h.s, of  (12.1h) vanish. 

If  a Brillouin theorem (11.4) would hold, also E12 , i.e. the first-order 
correlation correction to a second-order property, would vanish. This is, how- 
ever, not the 'case (unlike in CMP theory, see Sect. 13). 

In U C M P  theory a Hel lmann-Feynman theorem holds in the form (11.6) or 
(2.18). In fact the Eqs. (2.16b,c,d) are realized in (12.1d,f,g). 

The most interesting quantity is usually E22, i.e. the 2nd-order correlation 
correction to a 2rid-order property. Unfortunately the expression for this is 
rather lengthy (see I. 5.13) and its evaluation requires the knowledge of Yll and 
I/-20 or Yo2. It is probably easier to evaluate Yo2 than Y2o. We hence determine 
Yu and Yo2 from 

Cll = (~  I[[V, X], ro,] + [[/2, X], rio] -}- [[HHF, X], Zll ] 

+½[[[HI~F,X], Y01], Ym] + }[[[Hur, X], Ym], Y01]l ~> = 0  (12.3a) 

Co2 = ((J~} I[[~'~, X], Yol] '}-[[HHF, X], to2 ] "3p½[[[HHF , X], YOl], Yol]l ~ > = 0 (12.3b) 

and get E22 as 

E22 = ½<(~l[[V, YI1], roll +2[[  17, Ym], Yo21 +[[/2, Ylo], I711] 

q- [[[~ Ylo], Yol], Yol] +½[[[/2, Y,o], Yol], Ylo] 

.~_ 1[[[/2, Ylo], Ylo], Ylo] -~-½[[[Ho, rlO], Yo21, Ylo] 

~-½[[[Ho, Y,o], rio], Yo2] +½[[[Ho, YlO], Yll], Yol] 

+½[[[Ho, Ylo], rol], Yu] -}-½[[[[Ho, Ylo], Yo,], Ym], Yol]]~> (12.4) 

One will probably not want to evaluate expressions that are so complicated and 
so difficult to interpret. 

The fact that various authors have actually evaluated E22 [33, 36] is no 
argument against this general statement. 
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13. Coupled Maller-Plesset  theory (CMP) for properties 

To formulate coupled Moller-Plesset (CMP) theory we must first construct the 
#-dependent Fock operator that appears in Eq. (11.3). Remember that 
H(~ = HhrF has been defined as the one-electron operator (plus a constant term) 
which satisfies 

(~ I[H~)F, x ] l~)  = <+liB, z] l~) ;  VX e ~c (13.1b) 
In analogy we define HHF(#) as the one-electron operator which satisfies 

( ~  I e -  Y(~)HHF(/0 e r(~)lO } = (~1 e -  r(~)(n + #D) er( ') l+ } (13.2a) 

<+l e r(')[H~rr(#), X] e r(,)[ ~ )  = (~ [  e -  r(')[H + itO, X] e ~<~'l +> (13.2b) 

Expansion of (13.2) in powers of  # leads to (13.1) and 

(+ IH~ + r'~(°>,-/,~, Y,]I~> = (~ lo  + [H, r d [ ~ )  (13.3a) 

(1~ [/-/(') X] +rrrr(1) X], rl]l+> = <~l[~,x] +[[H,X], rl]l+> (13.3b) k** HF~ LL** HF~ 

. , r~(o) <+ I g ~  + r~(°L--,t,7, Zl] ~-[H(H 0), Z2] T 2 1 _ * * H F ,  YI]I¢> 

= <+ [[D, Y1] + [H, Y2] + ½[[H, Y,], Y~][~> (13.4a) 

( ~  r~(=) X] (I) + [[HHF, Y1] ~- [[H(H 0), X], Z2] ' (0) ~-  ~ [ [ [ H H F  , X'], Y,], Y,][(J~)'> k** H F ,  

-- ' H -- ( +  I[[~c~, X], Y,] + [[n, X], Y2] q- 2[[[ , X], Y,], Y,][I~) (13.4b) 

In view of (13.1b) we can simplify (13.3a) to 

<+In~l+> = <~IoI~> (13.5a) 

Noting that H = ,,r4(°)Z_/F + 17 we can rewrite (13.3b) as (having first used that X 
and Y1 can be interchanged) 

<+ I [H~  - O, X][+ > = <~ 1[[17, r,], x ] l¢> (13.5b) 

This means, that whenever H~)F appears in the form ((b [[H~)F, X]I+ ) it can be 
written as 

H~)F = D + [17, Y1] (13.6a) 

i.e. that rr(o which is a one-electron operator, is equal to the one-electron-part ~ H F  

of the r.h.s, of (13.6a) 
Since 17 is a genuine two-electron operator and Y1 is a one-electron operator, 

their commutator has no constant part, so also (13.5a) is compatible with 
(13.6a). Analogously one gets from (13.4) in the same meaning of the equality 
sign as in (13.6a) 

H~)F = [D, Y~] + [17, Y2] +½[[17, Y~], Y1]_/*~[L/(')HF, Yx] (13.6b) 

The 17(k) defined by (11.3) are then 

17(o) = 17 (13.7a) 

17(') = D - H~)F = --[17, Y1] (13.7b) 

17(2) -- ~(2) (13.7c) ** H F  

We can now apply double perturbation for the Hamiltonian (11.3). 
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This is somewhat more complicated than in the UM P case, due to the extra 
terms O(#2), O(~#), O(2/~2) in the Hamiltonian (11.3). In addition to the 
expression (2.16), one has additional contributions 

Ell  : (I/J0lVll I ~//0) = <~ I~,1~1~> (13.8a) 

E12: <~olvl2+[V~l, r-oil + [Vo~, r,0]r ~o> = <~ I ~7~2~ + [~o,  rl] + r,-,-~,..,~. 0-,o]1~> 
(13.8b) 

E21: (7'o11I"11, I11011 710) = ( ~  I[ 17(1), 0-1011 ~ )  (13.8c) 

Let us first consider the terms for 2 = 0, i.e. for the first label equal to 0 

~0 = <~ I n ~ l  • > = <~ Inl • > (13.9a) 

~01 = <~ I a ~ l ~ >  = <~ I01~> (13.9b) 
~02 -- < ~ l n ~  +=,~-.~.1ir/(1) rl]l~> =1<~1[o, rx]l~) (13.9c) 

with Y1 determined from 

0 = <~ I[Hg~, Xl + [[H~L Y1], Xl l~>  = <~l[ o,  X] + [[/-/, Y1], Xl]~> (13.10) 

i . e . -  as expec ted-  we retrieve CHF theory (see Sect. 4). We have put a tilde 
on the Ekt in (13.9) to mark the difference to the results of Sect. 12. A tilde 
on Y1 is not necessary, since the counterpart of Y1 in Sect. 12 is Yol. Note that 
Y01 and Y1 are obtained from different stationarity conditions and are hence 
different. 

We now make the ansatz 

7t = e ~ ;  0- = ~ 2k#z0-kz (13.11) 
k,l 

i.e. the Ykt of Sect. 12 are now replaced by the akt. For # = 0, i.e. the 2nd label 
equal to 0, we get, of course, the same results (12.1b,c) as in Sect. 12, just with 
Y10 replaced by o-10 which is solution of (12.2a). The counterpart of (12.2b) 
would be (13.10) with X ~ ~(c ~) replaced by Z e ~ ( 9 .  However, since both H~F 
and H(~F are one-electron operators, only the X s 5e(~ 1~ give non-vanishing 
contributions. Hence O-ol -- 0 and Y1 plays the role of Yo~. Let us now look at the 
mixed terms 

E11 = ( ~  I~(1) + [~(0), ya] l~ )  = (~1 - [ t7, Y~] + [ I7, Y1]I ~ )  = 0 (13.12a) 

E12 = 21 (1~ 12~(2)-k- [~(1), Y1] q- r t4(2)LI~HF, 0-10 ] _~_ [[~.~ OY1], Y1]lq ~) = 0 (13.12b) 

E2 1 = ( ~  ][~(1), o.lo ] _~_ [[~(o), Y1], al0] + I[[H~F, 0"10], 0"10] 

+ ~tLt''l rrr~(o)He, Y1], o"101, 0-1o] I ~> 

= 21-(~ I[[1, ~(°), Y1], o-lo] "-p[[~"2 ,0-~O],0-10]-~-[[[HHF , Y1], 0-1o], 0-1o]l~> (13 .12c)  

To see that E12 vanishes, one notes that H ~  is a one (and zero) particle operator 
and 0-10 a two-particle excitation operator, such that the expectation value of  the 
commutator vanishes. The other contributions cancel if one inserts their actual 
expressions. 

The first term is the first expression of  E21 vanishes because ~(1) = _ H ~ F  is 
a one-electron operator and 0-10 a two-electron operator. The expression for E22 
is so lengthy that we don't  give it here. 

It is noteworthy that the 1 st order correlation correction vanishes both for a 
first order property ( E l l =  0) and a second order property (EI~ = 0). 
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Let us now compare the results of UCMP and CMP. Of course, there is 
no difference for Eo, Et0, E2o, which don't  involve #f2, there is further agree- 
ment for Eol. Although Eo2 and /~o2 as given by (12.1e) and (13.9c) look 
formally the same, they differ because Y1 ¢ Yol- The difference between 
(12.2a) which determines Yol and (13_10) which determines Y1 is that f2 
in (12.2b) is replaced by ,,rr(1)~F = f2 + [V, Y1] in (13.10). Let us look at the 
respective functionals that represent the second order energies. These differ by 
a term 

½(q~ [[[ 1~, Y1], Y1]I ~ )  (13.13) 

This term is taken care of in CMP to 0th order in 2 and is ignored in 
UCMP. However, this term appears to 1st order in 2 (see (12.1h)) for 
UCMP, while there is no term to first order in 2 for CMP. The difference 
between UMP and CMP is hence that in CMP the entire functional is made 
stationary, in UMP only a part (hopefully the dominant one), while the 
remainder is evaluated with an approximate Y1. So UMP with inclusion of 
1st order correlation corrections is just an approximation to CMP, and corre- 
sponds to the first iteration beyond UCHF on the way to CHF. 

Sadlej [34] has proposed to refer to contributions like (13.13) that appear 
in UCMP to 1st (or higher order) in 2, but not in CMP as 'apparent correla- 
tion effects' in contrast to 'true correlation effects' as they appear in CMP to 
2nd order in 2. For a different derivation of CMP see [37]. 

What are the final conclusions about CMP and UCMP? For both ap- 
proaches Ell , i.e. the first-order correction to a first-order property Vanishes. 
Both approaches give rather simple results for El2, i.e. the first order correla- 
tion correction to a second order property and E21 the second order correla- 
tion correction for a first order property. In CMP El2 vanishes, which means 
CHF is correct to 0(2), to this order CMP is obsolete, while UCMP just 
corrects approximately the error of UCHF with respect to CHF. For E21 
there is relatively little difference between CMP and UCMP. For both 
schemes E22 is so complicated that one does not want to evaluate this 
quantity by double perturbation theory, and rather looks for an alternative 
approach. 

14. Stationary unitary coupled-cluster theory for properties 

We now want to study properties on the level of full CI. Let g0 be the 
full-CI wave function which makes the expectation value 

Eo- - (~o ln l~ '0 ) ;  ~ 0 = e ~  (14.1) 

stationary, i.e. which satisfies the Brillouin condition 

(~o1[ H, Z]l go} = 0; VZ e ~e~ "> (14.2) 

with H the Hamiltonian, including electron interaction, in the absence of 
external field #f2. We write the wave function in the presence of the external 
field as 

~(/~) = e ~ o ;  z = ~ •k72 k (14.3) 
k=l 
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we then get 

E = (TJ(#)IH + #~21 7t(#)) = ~ #kE k (14.4) 
k=l 

E, = < ~o l a l  ~o > = < • l a + [a, ~1 + ½ ffa, ~1, ~1 + " "  I ~ > (14.5a) 
E2 = ½(e0l[O, 27~]1 7'o> (14.5b) 

with 271 making the functional 

F(27,) = (7%1[f2, ¢11 + ½[[H, z',], 271] I ~'/0) (14.6) 

stationary, i.e. satisfying 

(7%1[O, Z 1 + [[H, Z], 27111 e o )  = 0; VZ ~ £a~,) (14.7) 

This looks formally rather simple. The difficulty is that we rarely know 7'o, and 
that even (14.7) is a too high-dimensional linear system of equations. 

In the spirit of Sect. 8 we can approximate the expectation value (14.1) by 
truncating the Hausdorff expansion at CEPA-0 level 

E 0 = (~ [  e -~H eel ~ ) ~ E~ 2) = (¢b IH + [H, a] + I[[H, a], a]lcb ) (14.8) 

with the stationary condition 

' H ( ~  I[H, Z] +5[[ , Z], 01 + ½[[H, or], Z ] I~  ) = 0 (14.9) 

In the same spirit we truncate the expectation value (14.4) 

E = ( 7%1H +#f2 + [ H  + #f2, #27,] + [n, #2-E2] + ½[[g, #'L-,], #27,] +O(#3)1 ~/o) 

~ E  ¢2) = ( ~  IH + [/-Z, ~] + ½[[H, a], G] + # { O  +[I-I, 271] 

+ [f2 + [H, 271], a] + ½[[f2 + [H, 27,], a], a]} 

+ #2{[o, 27,] + [/-/, 272] + ½[[/¢, 27d, ~,] 

+ [[f2, 27,] + [n, z2] + ½[[H, "c,], 271], o] 

+ ½[[[~c~, 271] + [H, "/72] +1[[ H, "~1], 271], 0-], 0"]} + O(#3) l~)  (14.10) 

The zeroth order (in #) is obviously E(0 2~ as defined by (14.8), the first order 
energy E~ 2) can, by means of (14.9) be simplified to 

E~ 2) = (~[f2 + [(2, a] + ½[[f2, a], a] +½[H, [~l, o-]] + ½[[[H, v,], or], a ] [~ )  (14.11) 

This is, unfortunately, not the HeUmann-Feynman  result (14.5a)truncated at 
terms quadratic in a, but there are additional terms. These only vanish, if rather 
than (14.9) we satisfy the stationarity condition (14.2) truncated after terms 
quadratic in a, i.e. 

(,~ I[H, Z]  + [[H, Z], a] + ½[[[H, Z], or], cr][~> = 0; VZ ~ ~(~") (14.12) 

To evaluate z, we expand (14.7) in powers of a and truncate after quadratic 
terms 

(4~ 1[12, Z] + [[H, Z], 27~1 + [[£2, Z] + [[H, Z], ~11, or] 

+ ½[[[£2, Z] + [[H, Z], z,], ~r]l 4~ ) = 0 (14.13) 

Using (14.1 2) and (14.1 3) we can simplify the second order energy E(22) contained 
in (14.10) to 

] 1 (2  E(22)=~(~I[f2,~l] +[[f2, z,],a] +~[[ ,~l],a],~r]l~ ) (14.14) 
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which one would also get from (14.5b) on expanding the powers of a and 
truncating after the quadratic terms. 

The important message is that for the calculation of properties on CEPA-0 
level one s h o u l d -  for the determination of a - n o t  use the stationarity con- 
dition (14.9) but rather (14.12). To some extent this means that in order to 
get properties correct to 2nd order in a we have to make the energy stationary 
to a higher order in a. It is also important that Z in (14.12) is not limited 
to double excitations, since the dominant part of Vl will consist of  single 
excitations. 

The scheme presented in this section will be called 'perturbative CEPA-0'. 
Note that in this section we have never assumed that the single determinant 

reference function q~ satisfies a Brillouin theorem. In fact this is only useful in 
perturbation theory, where it guarantees that first-order corrections vanish (see 
Sect. 9). In a nonperturbative theory as in a CEPA-0-1ike scheme it only 
matters that • is chosen such that S = Ila II is sufficiently small, that truncation 
of the Hausdorff expansion is justified. 

It is interesting to note that we have automatically satisfied the Brillouin- 
Brueckner condition in requiring that the Hel lmann-Feynman theorem should 
be satisfied. In fact, if (14.12) holds for all Z s 5e(c n), it holds a fo r t io r i  for all 
X ~  5~(] ), for which (14.12)just  becomes the Brillouin-Brueckner condition 
(9.5). If  we observe further that ~1 is dominated by single excitations and 
realize that (14.12) is needed for the simplification of E~ 2) and E (2) with Z e ~1, 
we conclude that (14.12) with Z e 5a(c n) replaced by Z ~ 5a(~ 1) would 'nearly' 
have the same effect, i.e. the Hel lmann-Feynman theorem would be almost 
satisfied. 

15. Three other variants of a CEPA-0 type approach to properties 

Let us now consider what one would get if one simply performs a CEPA-0 
calculation in the presence of #f2. There are at first glance two variants, in the 
first of these the reference function • is constructed from Har t r ee -Fock  theory 
in the absence of the field, and #f2 is only added in the CEPA-0 part. This 
corresponds somehow to UCMP. In the other variant, related to CMP, one 
optimizes even • in the presence of #f2. Note that in the formalism given in 
Sect. 14 this distinction was not necessary since the operator • performs the full 
transformation from To to T(#) and since no stationarity condition was im- 
posed on ~. 

We start with what may be called 'uncoupled CEPA-0'. We hence take the 
energy functional 

E(#) = ( ~  IH + #f2 + [H + #f2, a], a]lO ) (15.1) 

where a now depends, of course, on # 

a = ~ #ka k (15.2) 
k 

We expand E(#) in powers of # 

E(#) = ~ #kE k (15.3) 
k = 0  
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and get 

1 H Eo = ( ~  [H + [H, fo] + 5[[ , 6o], 6o]1~) (15.4a) 

I H 1 H  E l = ((J~ I~r~ + [~*'~, 60] + ½[[~'~, 6o1 , 60] + In ,  61] + 5[[ , 6o], 61] -~- 5[[ , 61], 6o]1 (~)) 
(15.4b) 

1 H  1 H  E2 : <(]~ I[ ~'~, 61] ~- 5[[ , 0"1], 61] + ½[[~r~, 61], 60 ] 2i_ [H, 62] + 5[[ o, 60], 62] 
1 H 1 ~t~ +5[[ , 62], 60] +7[[ , 6o], 6111@) (15.4c) 

Of course, o- 0 is determined by the stationarity condition for Eo 

( ~  I[H, Z] + ½[[H, Z], 60] + ½[[H, a0], z ] l ~ >  = 0 (15.5) 
If this is satisfied, E1 is simplified to the Hel lmann-Feynman expression 

E1 = (~lf2 + [f2, 6ol + ½[[0, 6ol, 6o11~) (15.6) 
Stationarity of E2 leads to the condition for 61 

1 H ( ~  I[a, Z] + ½[[a, Z], 6o1 + ½[[a, 6ol, Z] + ½[[H, Z], a l l +  d[  , 6d, z l l ~ >  = 0 
(15.7) 

If both (15.5) and (15.7) are satisfied, we get for E2: 
1 ½ [[~'~, 61], 1 e2 ~<~lta,611+ 0.0]+~[t ,60],alll~> (15.8) 

While the result for E1 is the same as before (14.5a), just with 6o and 6 determined 
from different stationarity conditions, E2 is significantly different from (14.14), it 
only contains correlation corrections to 1st order in 60, not to second order in 60. 
This somehow disqualifies 'uncoupled CEPA-0'. 

Let us now consider the 'coupled' variant. It becomes more lengthy. We first 
make 

<~]e  V(H + #f2) eYlcb> (15.9) 

stationary to 0th and 2nd order in/t  with respect to one-particle transformations. 
This leads to 

<~ lie, X]l 
<~I[[H, Y,],x] + 

as in CHF theory. We then take care of 
i.e. we take the functional 

¢ )  = 0  (15.10a) 

[f2, X]I¢  ) = 0 (15.10b) 

electron correlation on CEPA-0 level, 

E(6) = (~1 e-r{H +~0 + [H + #Q, 6] + ½[[H + #f2, tr], 6]} eYl~o) (15.11) 

and make this stationary with respect to variations of 0-. We first expand 0. and 
then E(6) in powers of kt and get 

Eo = (~o ]H + [H, Oo] +½[H, 6o], Go]If)  (15.12a) 

E1 = ( ~  I[H, Y1] + [[H, 60], Y,] + ½[[[H, 60], 60], Y1] + ~ + [~, 60] + l[[~, 60], 0-0] 
1 H + [H, 61] + ½[[H, 61], 6o] + 7[[ , °'o], °'111 ~ )  (15.12b) 

E2 = <4~ I[H, I12] + [[H, 6o], I12] + ½[[[H, 6o], 60], I(2] 
1 H ÷~[ [  , Y1], Y1] ÷½[[[H, 60] , Y1], Y1] ÷ ¼[[[[H, 60] , 60] , Y1], Y1] 

+ [Q, Y1] + [[Q, 60], Y1] + ½[[[Q, fro], 60], Y1] 
1 H  1 H  + [H, 62] + ½[[H, 62] , 60] + 5[[ , 60], 62] ~- 5[[ ' 61]' 61] 

1 Q "t- [~r~, 0.1] .31_ 7[[ ' 61]' 0"0] + ½[[0, 0-0], 0"1] 
1 H 1 H + [[H, 61], Y1] + 7[[[ , 61], 6o], YI] + 7[[[ , 6o], 61], Y1]l~> (15.12c) 
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The stationarity conditions are 

1 H ( ~  I[H, Z] + I[[H, Z], G0l + ~[[ , G0], Z ] I ~ )  = 0 ( i  5.13a) 

(~ I1[[e, od, Z] + l[[n, Z], o11 + [~, Z] + ½[[~, Z], G0] + ½[[~, G0], Z] 
+ [[H, Z], YII + ½[[[H, Z], Go], Y~]+I[[H,%],Z], Y,[~)  = 0  (15.13b) 

Using (15.13a) and (15.10a) we can simplify (15.12b) to 

= 1 H l f 2  , E, <~ I[[g, Go], YI] + d[[ , Go], Go], Y,] + ~ + [~, Go] + 5[[ , Go] G0ll~ > 
(15.14a) 

This is not the desired Hel lmann-Feynman expression like (14.5a) 
When one simplifies (15.12c) by means of  (15.13a,b) the expression is still very 

lengthy and differs even more from a Hel lmann-Feynman expression than does 
(15.14a). That 'coupled CEPA-0' does not satisfy a Hel lmann-Feynman theorem 
is a strong argument against this approach. 

What can we do after having discarded both coupled and uncoupled CEPA-0? 
Let us wonder what we have to do in order that a Hellmann-Feynman theorem 
holds. This leads us to the 'coupled Brillouin-Brueckner CEPA-0' approach for 
properties. We easily see that we get a Hel lmann-Feynman expression for El, if 
we replace the Brillouin condition (15.10a) by the Brillouin-Brueckner condition 

<~l[g, Xl+[[e, Gol, X]+1[[[n, Go],Gol, X][~>=O (15.15a) 

Then we get, in fact 

E1 = (4~ If~ + [f2, Go] + I[[f2, Go], ao] l~)  (15.14b) 

On first glance (15.15a) looks different from the Brillouin-Brueckner condition 
formulated in Sect. 9. However, by means of the Jacobi identity one can 
reformulate (15.15a) to 

(~ I[e, X] + [[n, X], Go] + 1[[[ar, X], Go], GollY) 
+ <q5 [[H, [a0, X]] + I[[H, [Go, X]], Go] + ½[[H, a0], [g0, X I [ ~ )  (15.15b) 

We recognize the first part of (15.15b) as (9.4), while the second part vanishes due 
to the CEPA-0 stationarity condition (15.10b) for Z = [Go, X]. Similarly the CHF 
condition (15.10b) does not lead to a sufficient simplification of (15.12c). We 
rather should satisfy the 'coupled-Brueckner-Hartree-Fock condition' 

( ~  I[[ H, Y1], X] + [[H, a0], rm], X] 

+ [[O, Go], XI + l[[[[n, Go], a0 ], Go ], YI 1, X] + 1[[[0, Go 1, ao], X] I ~ ) = 0 (15.16) 

Both (15.15a) and (15.16) imply that we make the energy in the presence of  
correlation effects stationary with respect to one-particle transformations, i.e. that 
we minimize the functional (15.11) with respect to variations of  I11 (and, of course, 
also with respect to variations of a). To minimize (15.9) instead is, so to say, not 
consistent. This stresses again that a Brillouin condition for the reference function, 
which is meaningful if the electron correlation is treated by perturbation theory, 
is not of much use in a nonperturbative context. 

If  (15.13a,b) and (15.15a, 16) hold, the expression (15.12c) for E2 can be 
simplified to 

1 f2 E2 = 1(I~1[ ~'~, YI] + [[O, Go], Y1] +~[[[ , a0], G0], YI] 

+ [~, G,] + ilia, Go], G~]l~> (15.17) 
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We see that the response to the perturbation #f2 is shared by two operators I11 
and 0-1. The difference between Yi and 0-1 is that I11 i s -  by cons t ruc t ion-  a 
one-electron operator, while o-1 is - in view of the Brillouin-Brueckner condi- 
tion - a two-electron operator. Note also that • is the Brueckner determinant 
rather than the Har t r ee -Fock  determinant. 

We realize that the 'coupled Brillouin-Brueckner CEPA-0' is not very 
different from the 'perturbed CEPA-0' of Sect. 14. The operator z of Sect. 14 is 
now split into two parts al and Y1, Only the dominant part Y1 is treated 'exactly' 
as compared to 'perturbed CEPA-0', while the 'correlation correction' 0-1 is 
treated on a lower level of approximation. 

The message is that the 'perturbed CEPA-0 approach' of Sect. 14 is probably 
the best choice, but the 'coupled Brueckner CEPA-0' may be a decent approxi- 
mation to 'perturbed CEPA-0', while both 'uncoupled' and 'coupled' CEPA-0 
have to be discarded. From this section we can also learn something about the 
validity of finite perturbation theory in a CEPA-0 context. In fact we have 
simulated this in the present section by 'uncoupled' and 'coupled' CEPA-0. 

We conclude that a finite perturbation theory in which one performs the 
starting Har t r ee -Fock  calculation for # = 0 and where one includes #(2 only in 
the CEPA-0 part, is inaccurate for second-order properties, as is seen from (15.8) 
as compared to (14.4). It is acceptable for first-order properties, but these are, 
anyhow, more easily evaluated as expectation values. 

If one includes #• already in the Har t r ee -Fock  calculations and continues 
then with CEPA-0 one gets results that don't  satisfy the Hel lmann-Feynman 
theorem, i.e. the result for a first-order property will be different depending on 
whether it is obtained by finite perturbation theory or as an expectation value. 
The error of the property will be linear rather than quadratic in the error of the 
wave function. Similar problems arise for second-order properties. 

Even in finite perturbation theory, in order to get consistent results, one 
should at least satisfy the Brillouin-Brueckner condition for all selected values 
of #. 

16. Coupled MC-CEPA-0 for properties 

In coupled MC-CEPA-0 theory for properties we proceed as in Sect. 14, just with 
the reference function • not the single Slater determinant of Har t r ee -Fock  
theory but an MC-SCF function. Since in Sect. 14 we have never used explicitly 
that ¢ is a single Slater determinant, almost everything can be taken over. Of 
course, the operator basis is a little more complicated, as discussed in Sect. 9 and 
it is less obvious than in the closed-shell case which basis operators should be 
included in the first iteration cycle, i.e. on CEPA-0 level. 

17. Conclusions 

Stationary perturbation theory - based on the Lie algebraic formulation of the 
variation pr inc ip le -  is the appropriate frame for the derivation of Har t ree -  
Fock theory and MC-SCF theory as well as of coupled Har t r ee -Fock  and 
coupled MC-SCF in a compact and elegant way. Also many-body perturbation 
theory as well as Moller-Plesset theory can be so formulated in a simple and 
transparent manner. The main interest in the application of the Lie algebraic 
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formulation of the variation principle is, however, the quadratically convergent 
iterative approach to the construction of the full-CI wave function, where the 
first iteration cycle is the well-known CEPA-0 approach. Protagonists of cou- 
pled-cluster (CC) theory might object at this point that a straightforward CC 
approach is - at its lowest level, i.e. CC-D or CC-SD - not much more compli- 
cated than CEPA-0 and gives usually more satisfactory results. This is true, but 
conventional coupled-cluster theory does not satisfy a stationarity condition of 
the type that we need for a unitary formulation. The author is convinced that on 
the long run the advantages of the hierarchy of approximations to full CI 
(including higher than the first iteration and the option for a multiconfiguration 
reference, but also corrections like CPF) will take over as compared to conven- 
tional coupled-cluster theory (especially if one is interested in properties, for 
which a different philosophy than for energies is required). 

The treatment of properties has, in the theory of the coupled cluster 
approach, so far only played a marginal role [28, 32]. There is no doubt that the 
stationary context is much more important for properties than for energies, and 
that the unitary formulation wins back much of what it may have lost for 
energies. It is almost imperative to use such methods for the calculation of 
properties including correlation effects, which do obey a Hel lmann-Feynman 
theorem, such that there is no ambiguity as to how the property should be 
evaluated. 

Double perturbation theory (DPT) does not appear to be a good choice for 
the calculation of correlation effects on a property. DPT based on the bare 
nuclear Hamiltonians as describing the unperturbed problem is formally straight- 
forward, but has the drawback that the full electron iteraction is too large in 
order to be treated by perturbation theory. DPT based on the Moller-Plesset 
pertition of the Hamiltonian faces the dilemma that two variants, coupled 
Moller-Plesset (CMP) and uncoupled Moller-Plesset (UCMP) can ]be defined, 
none of which is entirely satisfactory. CMP satisfies a Brillouin theorem which 
guarantees that the first-order correlation corrections, not only to the energy, but 
also to 1st order and 2nd order properties vanish, such that the dominant 
correlation corrections are in the second-order terms. On the other hand CMP 
does not satisfy a Hel lmann-Feynman theorem which would guarantee that the 
error in the property is quadratic in the error of the wave function. UCMP does 
satisfy a Hel lmann-Feynman theorem, but no Brillouin theorem. Hence there 
are correlation effects on properties formally to 1 st order in correlation, but these 
are no 'true' correlation effects since they are taken care of to 0tlh order in 
coupled Hartree-Fock (on which CMP is based). The most serious drawback of 
either variant of MP double perturbation theory is that the most interesting 
quantity, namely E22 the 2nd order correlation correction to a 2nd order 
property is so complicated that one would not hesitate to prefer an alternative 
non-perturbative way. 

A theory of properties on CEPA-0 level, i.e. with a non-perturbative treat- 
ment of correlation effects, can be formulated in a rather transparent way such 
that both a Brillouin and a Hellmann-Feynman-theorem hold. However, there 
is a price to pay. The Brillouin-condition that one has to satisfy is rather a 
Brillouin-Brueckner condition, i.e. it implies stationarity of the energy with 
respect to variations of the reference function in the presence of the leading terms 
that describe correlation. Moreover, even the counterpart of coupled Hartree-  
Fock theory must be performed on the same level, i.e. in the presence of 
correlation. 
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We have, in this paper, never specified the type of the external perturbation 
described by /~O. In fact one will mostly be concerned with magnetic interac- 
tions, because for electric perturbations finite perturbation theory is rather 
simple, while finite perturbation theory for magnetic perturbations would re- 
quire full complex arithmetics, which is certainly inconvenient. Of course, the 
Hamiltonian of a molecule in a magnetic field is not linear in the field strength, 
but contains also a quadratic term. The necessary generalization of the formal- 
ism is, however, almost trivial. The same is true for two magnetic perturbations 
as in the theory of chemical shifts. More serious, at any level of theory is the 
gauge problem. A transformation to individual gauge origins for different 
orbitals in the spirit of  the IGLO approach is possible, but complicates the 
formalism. 

Note that even if finite perturbation theory is possible, it need not be the 
best choice, since it does not necessarily satisfy a Hel lmann-Feynman theorem. 

We have, at various instances, assumed that the perturbation /~f2 is a 
one-electron operator. Some results are based on this assumption. If  one wants 
to apply the present theory to, say, an f2 which is a two-electron operator, 
some modifications in the final formulas may be necessary. 

One should mention that we have always argued in terms of a spin-orbital 
basis, while in practice one will mostly deal with spinfree systems and Lie 
algebras with spinfree excitation operators are advantageous. However, the 
necessary modifications are rather straightforward. 

The reader may want to know which method is recommended for the 
evaluation of correlation corrections to properties. This is the perturbed CEPA- 
0 approach of  Sect. 14 which satisfies a Hel lmann-Feynman theorem and a 
Brillouin-Brueckner condition. Finite perturbation theory based on CEPA-0 
can be applied, provided that for all selected values of the external perturbation 
a Brillouin-Brueckner condition is obeyed. 

Finally one should not forget that effects of dynamic correlation on pro- 
perties are often small, while non-dynamical correlation effects can be very 
pronounced. This means that a most important step towards a treatment 
of correlation effects for properties is often coupled MC-SCF as discussed in 
Sect. 4. 

Acknowledgement. The author thanks Ch. van Wiillen and J. Noga for fruitful discussions on this 
subject. 

Appendix 

Commutators in the particle-hole picture 

The excitation operators a~, aP~ etc. satisfy the following commutation relations 

r p _  p r (A.la)  [aPq, a~] =6qas 6saq 
p q  

J a r s  , aL] = ¢] t  t l p q  -4- ¢~t g l p q  - ¢]p  t7 tq  - ¢ ] q g l  p t  etc. (A.lb)  v r ~ u s  - - v s ~ - r u  v u - - r s  v u ~ - r s ,  

contractions from upper right to lower left appear with a + sign, from upper left 
to lower right with a - sign. 
Whenever one deals with the case that a particular single Slater determinant 
plays a privileged role, it is convenient to define q~ as a 'physical vacuum' and 
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to introduce a particle-hole formalism with respect to this vacuum. One then 
defines new operators 

8Pq = aPq - 6Pnq  (A.Za) 

- -  P q 6Paq)np + ( - 6 , a ,  + + ( - - ( ~ ; ( ~ ;  a ; ( ~ ; ) n p n q  gt pq - - a~, pq -[- ( fi~a, -[- q p 6qaP)nq + 

(A.2b) 

The ~7 operators have the interesting property that 

~TP 1~) = 0; a~Pq[I]))rs = 0 (A.3a) 

which implies a fortiori that 

<¢laPl >=0; etc. (A.3b) 

The commutators of the ~ operator differ from those of the a operators in the 
presence of cross contractions. Consider e.g. 

r p p r __ r ~ p  - -  p ~ r  r p [~tP, ctrs]=[aPq, a r ] = g q a s  - - ~ s a q - - b q a s  ~ s a q  + ( ~ q ~ s ( n p - - n q )  (A.4a) 

The last term of the final expression in (A.4a) is such a cross contraction. To the 
expectation value of a commutator only full contractions contribute, e.g. 

( ~  [[~Pq, ~ir][ q~> = 6q6 p (np - -  l'l q )  (A.5a) 

( ~  [[a£, aa[~) = a~o4 (A.5b) 

( ~  ][a~, a ~ ] l ~ )  = - ajba'b (A.5c) 

The commutator between a one-particle and a two-particle cannot have a full 
contraction, hence 

( ~  i[apq, ~rg][~> = 0 (A.6) 

The only nonvanishing expectation value of commutators between two-particle- 
operators are 

~kl - -  k l k l a b a b (~b [[acd, ~7~b] [ q ~ > -- 6~6c) (A.7a) - (a, 6j - aj 6i)(~cad 

" a,ak)(aaab - aba~) (A.7b) 

for the expectation value of double commutators one gets e.g. 
~ r  r t p p t r 

< ~  I l i a  p ,  as]  , a t l [ ~ >  : ((~ q(~s(~u - -  {5 s O q~Su)(n u - -  n t )  ( A . 8 )  

and the only nonvanishing matrix elements of type (A.8a) are 

( ~  f[[a~, a;], aT]l~b > = 1 (A.9a) 

I[[<, <1, aa l l¢> -- - (a.9b) 

(4~ [[[~i~, ~7~], a~][~) = - 1  (A.9c) 

(~b 1[[~7, ~Tr~], ~ ] [ ~ )  = 1 (A.9d) 

Such expectation values are conveniently represented by diagrams. 'Vacuum 
expectation value' diagrams must be completely contracted, i.e. have no external 
lines. They must further be connected, such that there is at least one contraction 
between the terms of the inner commutator, and so between the terms of the 
outer commutator. 
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For the application of the particle-hole formalism the Hamiltonian must be 

(A.10a) 

(A.10b) 

written in this formalism. One gets 
H -  P q - 1 p q  rs l e r p q ~ r s  

- -  h qap  5- 5grs apq = f~q~t q q- 26  rs ~ p q  

p r  f~q = h p + (gPfr - g r q ) n p  

The one-electron Brillouin condition (4.3) becomes: 

(7"o[[Ho, a ' , ] l ~ ' o > = ( ~ ' o ] [ H o , ~ ] l ~ o > = L ( n u - n , ) = O  (A.11a) 

f~a = f7  = 0 (A.1 lb) 

The construction of the Hessean (4.12a) is now very simple, if one chooses a 
basis in which: 

f~q =~p~Pq (A.1 lc) 
~b]]J~j~ = (Sb b i ~ ' b  H~ = (~b I[t~, [H, aj -- ej)rarj +gaj  = (H~/~)* (A.12a) 

H,,'~ = g,~b = ( H ~ b )  * (A.12b) 

References 

1. Kutzelnigg, W (1992) Theoret Chim Acta 83:263, paper I of this series 
2. Lrwdin PO (1955) Phys Rev 97:1474,1490,1509 
3. Kutzelnigg W (1989) J Mol Struct (Theochem) 202:11 
4. Dalgarno A, Stewart AL (1956) Proc Roy Soc A 238:269, 276 
5. Kutzelnigg W (1982) J Chem Plays 77:3081 
6. Kutzelnigg W (1989) in: Mukherjee D (ed) Aspects of many-body effects in molecules and 

extended systems, Lecture Notes in Chemistry, Vol 50, p 35. Springer, Berlin 
7. Kutzelnigg W (1979) Chem Phys Lett 64:383 
8. Kutzelnigg W (1980) Int J Quantum Chem 18:3 
9. Dalgarno A (1959) Proc Roy Soc A 251:282 

10. Hinze J, Roothaan CCJ (1967) Progr Theor Phys 40:37; Hinze J (1973) J Chem Phys 59:6424 
11. Levy B, Berthier G (1968) Int J Quantum Chem 2:307; Levy B (1970) Chem Phys Lett 4:17; 

(1970) Int J Quant Chem 4:2970 
12. Werner HJ (1987) Adv Chem Phys 69:1 
13. Shepard R (1987) Adv Chem Phys 69:63 
14. Jaszunski M, Sadlej AJ (1975) Theoret Chim Acta 40:157; Daborn GT, Handy NC (1983) Mol 

Phys 49:1277 
15. Kutzelnigg W (1977) in: Schaefer III HF (ed) Modern theoretical chemistry, Vol 3a, p 129. 

Plenum, NY 
16. Reitz H, Kutzelnigg W (1979) Chem Phys Letts 66:111 
17. K/immel H, Lfihrmann D (1972) Nucl Phys A 191:525; 194:225 
18. Kutzelnigg W (1984) in: Kfimmel H, Ristig L (eds) Recent progress in many-body theories, 

Lecture notes in physics, Vol 198. Springer, Berlin 
19. Kutzelnigg W (1992) in: Mukherjee D (ed) Applied many-body methods in spectroscopy and 

electronic structure. Plenum, p 4 
20. Kutzelnigg W (1984) J Chem Phys 80:822 
21. Kutzelnigg W (1991) Theoret Chim Acta 80:349 
22. Cizek J (1966) J Chem Phys 45: 4256; (1969) Adv Chem Phys 14:35 
23. Bartlett RJ (1989) J Phys Chem 93:1697 and references therein 
24. Meyer W (1973) J Chem Phys 58:1017 
25. Pople JA, Head-Gordon M, Raghavachari K (1987) J Chem Phys 87:5968; (1989) 90:4653 
26. Arponen J (1983) Ann Phys (NY) 151:311 
27. Ahlrichs R, Scharf P, Ehrhard C (1985) J Chem Phys 82:890 



Stationary perturbation theory II 81 

28. Bartlett RJ, Kucharski SK, Noga J (1989) Chem Phys Lett 155:133 
29. Kutzelnigg W, Smith VH (1964) J Chem Phys 41:869; Smith VH, Kutzelnigg W (1968) Ark Fys 

38:309 
30. K/immel H (1979) Nuel Phys A 317:199 
31. Gdanitz RJ, Ahlrichs R (1988) Chem Plays Lett 143:413 
32. Monkhorst H (1977) Int J Quant Chem 11:421 
33. Kelly HP (1969) Adv Chem Phys 14:129; Musher JI (1969) J Chem Phys 46:369; Doran MB 

(1974) J Phys B 7:558; Itajagiki T, Saika A (1979) J Chem Phys 70:2378 
34. Sadlej AJ (1981) J Chem Phys 73:320 
35. Caves TC, Karplus M (1969) J Chem Phys 50:3649; Nerbrandt PO, Roos B, Sadlej AJ (1979) Int 

J Quant Chem 15:135; Epstein ST, Sadlej AJ (1979) Int J Quantum Chem 15:147; Sadlej AJ 
(1983) Int J Quant Chem 23:147; Diercksen GHF, Roos B, Sadlej AJ (1981) J Chem Phys 
73:1253 

36. Oddershedde J, Jorgensen P, Yeager DK (1984) Comput Phys Rep 2:33; Geertsen J, Odder- 
shedde J (1986) J Chem Phys 85:2112; Gallasso V, Fronzoni G (1986) J Chem Phys 84:3215; 
Fronzoni G, Galasso V (1986) Chem Phys 103:29; Bouman TD, Hansen AE (1990) Chem Phys 
Lett 175:292 

37. Gauss J (1992) Chem Phys Lett 191:614 


